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Introduction
The first sentence of this introduction was supposed to be this one:
“Interpreters are magical”. But one of the earliest reviewers, who
wishes to remain anonymous, said that “sounds super stupid”. Well,
Christian, I don’t think so! I still think that interpreters are magical! Let
me tell you why.

On the surface they look deceptively simple: text goes in and
something comes out. They are programs that take other programs
as their input and produce something. Simple, right? But the more
you think about it, the more fascinating it becomes. Seemingly
random characters - letters, numbers and special characters - are fed
into the interpreter and suddenly become meaningful. The
interpreter gives them meaning! It makes sense out of nonsense.
And the computer, a machine that’s built on understanding ones and
zeroes, now understands and acts upon this weird language we feed
into it - thanks to an interpreter that translates this language while
reading it.

I kept asking myself: how does this work? And the first time this
question began forming in my mind, I already knew that I’ll only be
satisfied with an answer if I get to it by writing my own interpreter. So I
set out to do so.

A lot of books, articles, blog posts and tutorials on interpreters exist.
Most of the time, though, they fall into one of two categories. Either
they are huge, incredibly heavy on theory and more targeted towards
people who already have a vast understanding of the topic, or they
are really short, provide just a small introduction to the topic, use
external tools as black boxes and only concern themselves with “toy
interpreters”.

One of the main sources of frustration was this latter category of
resources, because the interpreters they explain only interpret



languages with a really simple syntax. I didn’t want to take a shortcut!
I truly wanted to understand how interpreters work and that included
understanding how lexers and parsers work. Especially with a C-like
language and its curly braces and semicolons, where I didn’t even
know how to start parsing them. The academic textbooks had the
answers I was looking for, of course. But rather inaccessible to me,
behind their lengthy, theoretical explanations and mathematical
notation.

What I wanted was something between the 900 page book on
compilers and the blog post that explains how to write a Lisp
interpreter in 50 lines of Ruby code.

So I wrote this book, for you and me. This is the book I wish I had.
This is a book for people who love to look under the hood. For people
that love to learn by understanding how something really works.

In this book we’re going to write our own interpreter for our own
programming language - from scratch. We won’t be using any 3rd
party tools and libraries. The result won’t be production-ready, it won’t
have the performance of a fully-fledged interpreter and, of course, the
language it’s built to interpret will be missing features. But we’re going
to learn a lot.

It’s difficult to make generic statements about interpreters since the
variety is so high and none are alike. What can be said is that the one
fundamental attribute they all share is that they take source code and
evaluate it without producing some visible, intermediate result that
can later be executed. That’s in contrast to compilers, which take
source code and produce output in another language that the
underlying system can understand.

Some interpreters are really small, tiny, and do not even bother with a
parsing step. They just interpret the input right away. Look at one of
the many Brainfuck interpreters out there to see what I mean.



On the other end of the spectrum are much more elaborate types of
interpreters. Highly optimized and using advanced parsing and
evaluation techniques. Some of them don’t just evaluate their input,
but compile it into an internal representation called bytecode and then
evaluate this. Even more advanced are JIT interpreters that compile
the input just-in-time into native machine code that gets then
executed.

But then, in between those two categories, there are interpreters that
parse the source code, build an abstract syntax tree (AST) out of it
and then evaluate this tree. This type of interpreter is sometimes
called “tree-walking” interpreter, because it “walks” the AST and
interprets it.

What we will be building in this book is such a tree-walking
interpreter.

We’re going to build our own lexer, our own parser, our own tree
representation and our own evaluator. We’ll see what “tokens” are,
what an abstract syntax tree is, how to build such a tree, how to
evaluate it and how to extend our language with new data structures
and built-in functions.



The Monkey Programming Language &
Interpreter
Every interpreter is built to interpret a specific programming
language. That’s how you “implement” a programming language.
Without a compiler or an interpreter a programming language is
nothing more than an idea or a specification.

We’re going to parse and evaluate our own language called Monkey.
It’s a language specifically designed for this book. Its only
implementation is the one we’re going to build in this book - our
interpreter.

Expressed as a list of features, Monkey has the following:

C-like syntax
variable bindings
integers and booleans
arithmetic expressions
built-in functions
first-class and higher-order functions
closures
a string data structure
an array data structure
a hash data structure

We’re going to take a detailed look at and implement each of these
features in the rest of this book. But for now, let’s see what Monkey
looks like.

Here is how we bind values to names in Monkey:

let age = 1;
let name = "Monkey";
let result = 10 * (20 / 2);



Besides integers, booleans and strings, the Monkey interpreter we’re
going to build will also support arrays and hashes. Here’s what
binding an array of integers to a name looks like:

And here is a hash, where values are associated with keys:

Accessing the elements in arrays and hashes is done with index
expressions:

The let statements can also be used to bind functions to names.
Here’s a small function that adds two numbers:

But Monkey not only supports return statements. Implicit return
values are also possible, which means we can leave out the return if
we want to:

And calling a function is as easy as you’d expect:

A more complex function, such as a fibonacci function that returns
the Nth Fibonacci number, might look like this:

let myArray = [1, 2, 3, 4, 5];

let thorsten = {"name": "Thorsten", "age": 28};

myArray[0]       // => 1
thorsten["name"] // => "Thorsten"

let add = fn(a, b) { return a + b; };

let add = fn(a, b) { a + b; };

add(1, 2);

let fibonacci = fn(x) {
  if (x == 0) {
    0
  } else {
    if (x == 1) {
      1



Note the recursive calls to fibonacci itself!

Monkey also supports a special type of functions, called higher order
functions. These are functions that take other functions as
arguments. Here is an example:

Here twice takes two arguments: another function called addTwo and
the integer 2. It calls addTwo two times with first 2 as argument and
then with the return value of the first call. The last line produces 6.

Yes, we can use functions as arguments in function calls. Functions
in Monkey are just values, like integers or strings. That feature is
called “first class functions”.

The interpreter we’re going to build in this book will implement all
these features. It will tokenize and parse Monkey source code in a
REPL, building up an internal representation of the code called
abstract syntax tree and then evaluate this tree. It will have a few
major parts:

the lexer
the parser
the Abstract Syntax Tree (AST)

    } else {
      fibonacci(x - 1) + fibonacci(x - 2);
    }
  }
};

let twice = fn(f, x) {
  return f(f(x));
};

let addTwo = fn(x) {
  return x + 2;
};

twice(addTwo, 2); // => 6



the internal object system
the evaluator

We’re going to build these parts in exactly this order, from the bottom
up. Or better put: starting with the source code and ending with the
output. The drawback of this approach is that it won’t produce a
simple “Hello World” after the first chapter. The advantage is that it’s
easier to understand how all the pieces fit together and how the data
flows through the program.

But why the name? Why is it called “Monkey”? Well, because
monkeys are magnificent, elegant, fascinating and funny creatures.
Exactly like our interpreter.

And why the name of the book?



Why Go?
If you read this far without noticing the title and the words “in Go” in it,
first of all: congratulations, that’s pretty remarkable. And second: we
will write our interpreter in Go. Why Go?

I like writing code in Go. I enjoy using the language, its standard
library and the tools it provides. But other than that I think that Go is in
possession of a few attributes that make it a great fit for this particular
book.

Go is really easy to read and subsequently understand. You won’t
need to decipher the Go code I present to you in this book. Even if
you are not an experienced Go programmer. I’d bet that you can
follow this book along even if you’ve never written a single line of Go
in your life.

Another reason is the great tooling Go provides. The focus of this
book is the interpreter we are writing - the ideas and concepts behind
it and its implementation. With Go’s universal formatting style thanks
to gofmt and a testing framework built-in, we can concentrate on our
interpreter and not worry about 3rd party libraries, tools and
dependencies. We won’t be using any other tools in this book other
than the ones provided by the Go programming language.

But I think much more important is that the Go code presented in this
book maps closely to other and possibly more low-level languages,
like C, C++ and Rust. Maybe the reason for this is Go itself, with its
focus on simplicity, its stripped-down charm and lack of programming
language constructs that are absent in other languages and hard to
translate. Or maybe it’s because of the way I chose to write Go for
this book. Either way, there won’t be any meta-programming tricks to
take a shortcut that nobody understands anymore after two weeks
and no grandiose object-oriented designs and patterns that need
pen, paper and the sentence “actually, it’s pretty easy” to explain.



All of these reasons make the code presented here easy to
understand (on a conceptual as well as a technical level) and
reusable for you. And if you, after reading this book, choose to write
your own interpreter in another language this should come in handy.
With this book I want to provide a starting point in your understanding
and construction of interpreters and I think the code reflects that.



How to Use this Book
This book is neither a reference, nor is it a theory-laden paper
describing concepts of interpreter implementation with code in the
appendix. This book is meant to be read from start to finish and I
recommend that you follow along by reading, typing out and
modifying the presented code.

Each chapter builds upon its predecessor - in code and in prose. And
in each chapter we build another part of our interpreter, piece by
piece. To make it easier to follow along, the book comes with a folder
called code, that contains, well, code. If your copy of the book came
without the folder, you can download it here:

https://interpreterbook.com/waiig_code_1.7.zip

The code folder is divided into several subfolders, with one for each
chapter, containing the final result of the corresponding chapter.

Sometimes I’ll only allude to something being in the code, without
showing the code itself (because either it would take up too much
space, as is the case with the test files, or it is just some detail) - you
can find this code in the folder accompanying the chapter, too.

Which tools do you need to follow along? Not much: a text editor and
the Go programming language. Any Go version above 1.0 should
work, but just as a disclaimer and for future generations: when I wrote
this book I was using Go 1.7. Now, with the latest update of the book,
I’m using Go 1.14.

If you’re using Go >= 1.13 the code in the code folder should be
runnable out of the box.

If you’re on an older version of Go, one that doesn’t support Go
modules, I recommend using direnv, which can change the

https://interpreterbook.com/waiig_code_1.7.zip
http://direnv.net/


environment of your shell according to an .envrc file. Each sub-folder
in the code folder accompanying this book contains such an .envrc
file that sets the GOPATH correctly for this sub-folder. That allows us to
easily work with the code of different chapters.

And with that out of the way, let’s get started!



Lexing



1.1 - Lexical Analysis
In order for us to work with source code we need to turn it into a more
accessible form. As easy as plain text is to work with in our editor, it
becomes cumbersome pretty fast when trying to interpret it in a
programming language as another programming language.

So, what we need to do is represent our source code in other forms
that are easier to work with. We’re going to change the
representation of our source code two times before we evaluate it:

 

The first transformation, from source code to tokens, is called “lexical
analysis”, or “lexing” for short. It’s done by a lexer (also called
tokenizer or scanner – some use one word or the other to denote
subtle differences in behaviour, which we can ignore in this book).

Tokens themselves are small, easily categorizable data structures
that are then fed to the parser, which does the second transformation
and turns the tokens into an “Abstract Syntax Tree”.

Here’s an example. This is the input one gives to a lexer:

And what comes out of the lexer looks kinda like this:

"let x = 5 + 5;"

[
  LET,
  IDENTIFIER("x"),
  EQUAL_SIGN,
  INTEGER(5),
  PLUS_SIGN,
  INTEGER(5),



All of these tokens have the original source code representation
attached. "let" in the case of LET, "+" in the case of PLUS_SIGN, and
so on. Some, like IDENTIFIER and INTEGER in our example, also have
the concrete values they represent attached: 5 (not "5"!) in the case
of INTEGER and "x" in the case of IDENTIFIER. But what exactly
constitutes a “token” varies between different lexer implementations.
As an example, some lexers only convert the "5" to an integer in the
parsing stage, or even later, and not when constructing tokens.

A thing to note about this example: whitespace characters don’t show
up as tokens. In our case that’s okay, because whitespace length is
not significant in the Monkey language. Whitespace merely acts as a
separator for other tokens. It doesn’t matter if we type this:

Or if we type this:

In other languages, like Python, the length of whitespace is
significant. That means the lexer can’t just “eat up” the whitespace
and newline characters. It has to output the whitespace characters as
tokens so the parser can later on make sense of them (or output an
error, of course, if there are not enough or too many).

A production-ready lexer might also attach the line number, column
number and filename to a token. Why? For example, to later output
more useful error messages in the parsing stage. Instead of "error:
expected semicolon token" it can output:

We’re not going to bother with that. Not because it’s too complex, but
because it would take away from the essential simpleness of the

  SEMICOLON
]

let x = 5;

let   x   =   5;

"error: expected semicolon token. line 42, column 23, program.monkey"



tokens and the lexer, making it harder to understand.



1.2 - Defining Our Tokens
The first thing we have to do is to define the tokens our lexer is going
to output. We’re going to start with just a few token definitions and
then add more when extending the lexer.

The subset of the Monkey language we’re going to lex in our first step
looks like this:

Let’s break this down: which types of tokens does this example
contain? First of all, there are the numbers like 5 and 10. These are
pretty obvious. Then we have the variable names x, y, add and
result. And then there are also these parts of the language that are
not numbers, just words, but no variable names either, like let and
fn. Of course, there are also a lot of special characters: (, ), {, }, =, ,,
;.

The numbers are just integers and we’re going to treat them as such
and give them a separate type. In the lexer or parser we don’t care if
the number is 5 or 10, we just want to know if it’s a number. The same
goes for “variable names”: we’ll call them “identifiers” and treat them
the same. Now, the other words, the ones that look like identifiers, but
aren’t really identifiers, since they’re part of the language, are called
“keywords”. We won’t group these together since it should make a
difference in the parsing stage whether we encounter a let or a fn.
The same goes for the last category we identified: the special

let five = 5;
let ten = 10;

let add = fn(x, y) {
  x + y;
};

let result = add(five, ten);



characters. We’ll treat each of them separately, since it is a big
difference whether or not we have a ( or a ) in the source code.

Let’s define our Token data structure. Which fields does it need? As
we just saw, we definitely need a “type” attribute, so we can
distinguish between “integers” and “right bracket” for example. And it
also needs a field that holds the literal value of the token, so we can
reuse it later and the information whether a “number” token is a 5 or a
10 doesn’t get lost.

In a new token package we define our Token struct and our TokenType
type:

We defined the TokenType type to be a string. That allows us to use
many different values as TokenTypes, which in turn allows us to
distinguish between different types of tokens. Using string also has
the advantage of being easy to debug without a lot of boilerplate and
helper functions: we can just print a string. Of course, using a string
might not lead to the same performance as using an int or a byte
would, but for this book a string is perfect.

As we just saw, there is a limited number of different token types in
the Monkey language. That means we can define the possible
TokenTypes as constants. In the same file we add this:

// token/token.go

package token

type TokenType string

type Token struct {
    Type    TokenType
    Literal string
}

// token/token.go

const (



As you can see there are two special types: ILLEGAL and EOF. We
didn’t see them in the example above, but we’ll need them. ILLEGAL
signifies a token/character we don’t know about and EOF stands for
“end of file”, which tells our parser later on that it can stop.

So far so good! We are ready to start writing our lexer.

    ILLEGAL = "ILLEGAL"
    EOF     = "EOF"

    // Identifiers + literals
    IDENT = "IDENT" // add, foobar, x, y, ...
    INT   = "INT"   // 1343456

    // Operators
    ASSIGN   = "="
    PLUS     = "+"

    // Delimiters
    COMMA     = ","
    SEMICOLON = ";"

    LPAREN = "("
    RPAREN = ")"
    LBRACE = "{"
    RBRACE = "}"

    // Keywords
    FUNCTION = "FUNCTION"
    LET      = "LET"
)



1.3 - The Lexer
Before we start to write code, let’s be clear about the goal of this
section. We’re going to write our own lexer. It will take source code as
input and output the tokens that represent the source code. It will go
through its input and output the next token it recognizes. It doesn’t
need to buffer or save tokens, since there will only be one method
called NextToken(), which will output the next token.

That means, we’ll initialize the lexer with our source code and then
repeatedly call NextToken() on it to go through the source code, token
by token, character by character. We’ll also make life simpler here by
using string as the type for our source code. Again: in a production
environment it makes sense to attach filenames and line numbers to
tokens, to better track down lexing and parsing errors. So it would be
better to initialize the lexer with an io.Reader and the filename. But
since that would add more complexity we’re not here to handle, we’ll
start small and just use a string and ignore filenames and line
numbers.

Having thought this through, we now realize that what our lexer
needs to do is pretty clear. So let’s create a new package and add a
first test that we can continuously run to get feedback about the
working state of the lexer. We’re starting small here and will extend
the test case as we add more capabilities to the lexer:

// lexer/lexer_test.go

package lexer

import (
    "testing"

    "monkey/token"
)

func TestNextToken(t *testing.T) {



Of course, the tests fail – we haven’t written any code yet:

So let’s start by defining the New() function that returns *Lexer.

    input := `=+(){},;`

    tests := []struct {
        expectedType    token.TokenType
        expectedLiteral string
    }{
        {token.ASSIGN, "="},
        {token.PLUS, "+"},
        {token.LPAREN, "("},
        {token.RPAREN, ")"},
        {token.LBRACE, "{"},
        {token.RBRACE, "}"},
        {token.COMMA, ","},
        {token.SEMICOLON, ";"},
        {token.EOF, ""},
    }

    l := New(input)

    for i, tt := range tests {
        tok := l.NextToken()

        if tok.Type != tt.expectedType {
            t.Fatalf("tests[%d] - tokentype wrong. expected=%q, got=%q",
                i, tt.expectedType, tok.Type)
        }

        if tok.Literal != tt.expectedLiteral {
            t.Fatalf("tests[%d] - literal wrong. expected=%q, got=%q",
                i, tt.expectedLiteral, tok.Literal)
        }
    }
}

$ go test ./lexer
# monkey/lexer
lexer/lexer_test.go:27: undefined: New
FAIL    monkey/lexer [build failed]



Most of the fields in Lexer are pretty self-explanatory. The ones that
might cause some confusion right now are position and
readPosition. Both will be used to access characters in input by
using them as an index, e.g.: l.input[l.readPosition]. The reason
for these two “pointers” pointing into our input string is the fact that we
will need to be able to “peek” further into the input and look after the
current character to see what comes up next. readPosition always
points to the “next” character in the input. position points to the
character in the input that corresponds to the ch byte.

A first helper method called readChar() should make the usage of
these fields easier to understand:

// lexer/lexer.go
package lexer

type Lexer struct {
    input        string
    position     int  // current position in input (points to current char)
    readPosition int  // current reading position in input (after current char)
    ch           byte // current char under examination
}

func New(input string) *Lexer {
    l := &Lexer{input: input}
    return l
}

// lexer/lexer.go

func (l *Lexer) readChar() {
    if l.readPosition >= len(l.input) {
        l.ch = 0
    } else {
        l.ch = l.input[l.readPosition]
    }
    l.position = l.readPosition
    l.readPosition += 1
}



The purpose of readChar is to give us the next character and advance
our position in the input string. The first thing it does is to check
whether we have reached the end of input. If that’s the case it sets
l.ch to 0, which is the ASCII code for the "NUL" character and
signifies either “we haven’t read anything yet” or “end of file” for us.
But if we haven’t reached the end of input yet it sets l.ch to the next
character by accessing l.input[l.readPosition].

After that l.position is updated to the just used l.readPosition and
l.readPosition is incremented by one. That way, l.readPosition
always points to the next position where we’re going to read from
next and l.position always points to the position where we last read.
This will come in handy soon enough.

While talking about readChar it’s worth pointing out that the lexer only
supports ASCII characters instead of the full Unicode range. Why?
Because this lets us keep things simple and concentrate on the
essential parts of our interpreter. In order to fully support Unicode and
UTF-8 we would need to change l.ch from a byte to rune and change
the way we read the next characters, since they could be multiple
bytes wide now. Using l.input[l.readPosition] wouldn’t work
anymore. And then we’d also need to change a few other methods
and functions we’ll see later on. So it’s left as an exercise to the
reader to fully support Unicode (and emojis!) in Monkey.

Let’s use readChar in our New() function so our *Lexer is in a fully
working state before anyone calls NextToken(), with l.ch, l.position
and l.readPosition already initialized:

// lexer/lexer.go

func New(input string) *Lexer {
    l := &Lexer{input: input}
    l.readChar()
    return l
}



Our tests now tell us that calling New(input) doesn’t result in
problems anymore, but the NextToken() method is still missing. Let’s
fix that by adding a first version:

// lexer/lexer.go

package lexer

import "monkey/token"

func (l *Lexer) NextToken() token.Token {
    var tok token.Token

    switch l.ch {
    case '=':
        tok = newToken(token.ASSIGN, l.ch)
    case ';':
        tok = newToken(token.SEMICOLON, l.ch)
    case '(':
        tok = newToken(token.LPAREN, l.ch)
    case ')':
        tok = newToken(token.RPAREN, l.ch)
    case ',':
        tok = newToken(token.COMMA, l.ch)
    case '+':
        tok = newToken(token.PLUS, l.ch)
    case '{':
        tok = newToken(token.LBRACE, l.ch)
    case '}':
        tok = newToken(token.RBRACE, l.ch)
    case 0:
        tok.Literal = ""
        tok.Type = token.EOF
    }

    l.readChar()
    return tok
}

func newToken(tokenType token.TokenType, ch byte) token.Token {
    return token.Token{Type: tokenType, Literal: string(ch)}
}



That’s the basic structure of the NextToken() method. We look at the
current character under examination (l.ch) and return a token
depending on which character it is. Before returning the token we
advance our pointers into the input so when we call NextToken()
again the l.ch field is already updated. A small function called
newToken helps us with initializing these tokens.

Running the tests we can see that they pass:

$ go test ./lexer
ok      monkey/lexer 0.007s

Great! Let’s now extend the test case so it starts to resemble Monkey
source code.

// lexer/lexer_test.go

func TestNextToken(t *testing.T) {
    input := `let five = 5;
let ten = 10;

let add = fn(x, y) {
  x + y;
};

let result = add(five, ten);
`

    tests := []struct {
        expectedType    token.TokenType
        expectedLiteral string
    }{
        {token.LET, "let"},
        {token.IDENT, "five"},
        {token.ASSIGN, "="},
        {token.INT, "5"},
        {token.SEMICOLON, ";"},
        {token.LET, "let"},
        {token.IDENT, "ten"},
        {token.ASSIGN, "="},
        {token.INT, "10"},
        {token.SEMICOLON, ";"},



Most notably the input in this test case has changed. It looks like a
subset of the Monkey language. It contains all the symbols we
already successfully turned into tokens, but also new things that are
now causing our tests to fail: identifiers, keywords and numbers.

Let’s start with the identifiers and keywords. What our lexer needs to
do is recognize whether the current character is a letter and if so, it
needs to read the rest of the identifier/keyword until it encounters a
non-letter-character. Having read that identifier/keyword, we then
need to find out if it is a identifier or a keyword, so we can use the

        {token.LET, "let"},
        {token.IDENT, "add"},
        {token.ASSIGN, "="},
        {token.FUNCTION, "fn"},
        {token.LPAREN, "("},
        {token.IDENT, "x"},
        {token.COMMA, ","},
        {token.IDENT, "y"},
        {token.RPAREN, ")"},
        {token.LBRACE, "{"},
        {token.IDENT, "x"},
        {token.PLUS, "+"},
        {token.IDENT, "y"},
        {token.SEMICOLON, ";"},
        {token.RBRACE, "}"},
        {token.SEMICOLON, ";"},
        {token.LET, "let"},
        {token.IDENT, "result"},
        {token.ASSIGN, "="},
        {token.IDENT, "add"},
        {token.LPAREN, "("},
        {token.IDENT, "five"},
        {token.COMMA, ","},
        {token.IDENT, "ten"},
        {token.RPAREN, ")"},
        {token.SEMICOLON, ";"},
        {token.EOF, ""},
    }
// [...]
}



correct token.TokenType. The first step is extending our switch
statement:

We added a default branch to our switch statement, so we can check
for identifiers whenever the l.ch is not one of the recognized
characters. We also added the generation of token.ILLEGAL tokens. If
we end up there, we truly don’t know how to handle the current
character and declare it as token.ILLEGAL.

// lexer/lexer.go

import "monkey/token"

func (l *Lexer) NextToken() token.Token {
    var tok token.Token

    switch l.ch {
// [...]
    default:
        if isLetter(l.ch) {
            tok.Literal = l.readIdentifier()
            return tok
        } else {
            tok = newToken(token.ILLEGAL, l.ch)
        }
    }
// [...]
}

func (l *Lexer) readIdentifier() string {
    position := l.position
    for isLetter(l.ch) {
        l.readChar()
    }
    return l.input[position:l.position]
}

func isLetter(ch byte) bool {
    return 'a' <= ch && ch <= 'z' || 'A' <= ch && ch <= 'Z' || ch == '_'
}



The isLetter helper function just checks whether the given argument
is a letter. That sounds easy enough, but what’s noteworthy about
isLetter is that changing this function has a larger impact on the
language our interpreter will be able to parse than one would expect
from such a small function. As you can see, in our case it contains the
check ch == '_', which means that we’ll treat _ as a letter and allow it
in identifiers and keywords. That means we can use variable names
like foo_bar. Other programming languages even allow ! and ? in
identifiers. If you want to allow that too, this is the place to sneak it in.

readIdentifier() does exactly what its name suggests: it reads in an
identifier and advances our lexer’s positions until it encounters a non-
letter-character.

In the default: branch of the switch statement we use
readIdentifier() to set the Literal field of our current token. But
what about its Type? Now that we have read identifiers like let, fn or
foobar, we need to be able to tell user-defined identifiers apart from
language keywords. We need a function that returns the correct
TokenType for the token literal we have. What better place than the
token package to add such a function?

LookupIdent checks the keywords table to see whether the given
identifier is in fact a keyword. If it is, it returns the keyword’s TokenType

// token/token.go

var keywords = map[string]TokenType{
    "fn":  FUNCTION,
    "let": LET,
}

func LookupIdent(ident string) TokenType {
    if tok, ok := keywords[ident]; ok {
        return tok
    }
    return IDENT
}



constant. If it isn’t, we just get back token.IDENT, which is the
TokenType for all user-defined identifiers.

With this in hand we can now complete the lexing of identifiers and
keywords:

The early exit here, our return tok statement, is necessary because
when calling readIdentifier(), we call readChar() repeatedly and
advance our readPosition and position fields past the last character
of the current identifier. So we don’t need the call to readChar() after
the switch statement again.

Running our tests now, we can see that let is identified correctly but
the tests still fail:

// lexer/lexer.go

func (l *Lexer) NextToken() token.Token {
    var tok token.Token

    switch l.ch {
// [...]
    default:
        if isLetter(l.ch) {
            tok.Literal = l.readIdentifier()
            tok.Type = token.LookupIdent(tok.Literal)
            return tok
        } else {
            tok = newToken(token.ILLEGAL, l.ch)
        }
    }
// [...]
}

$ go test ./lexer
--- FAIL: TestNextToken (0.00s)
  lexer_test.go:70: tests[1] - tokentype wrong. expected="IDENT", got="ILLEGAL"
FAIL
FAIL    monkey/lexer 0.008s



The problem is the next token we want: a IDENT token with "five" in
its Literal field. Instead we get an ILLEGAL token. Why is that?
Because of the whitespace character between “let” and “five”. But in
Monkey whitespace only acts as a separator of tokens and doesn’t
have meaning, so we need to skip over it entirely:

This little helper function is found in a lot of parsers. Sometimes it’s
called eatWhitespace and sometimes consumeWhitespace and
sometimes something entirely different. Which characters these
functions actually skip depends on the language being lexed. Some
language implementations do create tokens for newline characters
for example and throw parsing errors if they are not at the correct
place in the stream of tokens. We skip over newline characters to
make the parsing step later on a little easier.

With skipWhitespace() in place, the lexer trips over the 5 in the let
five = 5; part of our test input. And that’s right, it doesn’t know yet
how to turn numbers into tokens. It’s time to add this.

As we did previously for identifiers, we now need to add more
functionality to the default branch of our switch statement.

// lexer/lexer.go

func (l *Lexer) NextToken() token.Token {
    var tok token.Token

    l.skipWhitespace()

    switch l.ch {
// [...]
}

func (l *Lexer) skipWhitespace() {
    for l.ch == ' ' || l.ch == '\t' || l.ch == '\n' || l.ch == '\r' {
        l.readChar()
    }
}



As you can see, the added code closely mirrors the part concerned
with reading identifiers and keywords. The readNumber method is
exactly the same as readIdentifier except for its usage of isDigit
instead of isLetter. We could probably generalize this by passing in
the character-identifying functions as arguments, but won’t, for
simplicity’s sake and ease of understanding.

// lexer/lexer.go

func (l *Lexer) NextToken() token.Token {
    var tok token.Token

    l.skipWhitespace()

    switch l.ch {
// [...]
    default:
        if isLetter(l.ch) {
            tok.Literal = l.readIdentifier()
            tok.Type = token.LookupIdent(tok.Literal)
            return tok
        } else if isDigit(l.ch) {
            tok.Type = token.INT
            tok.Literal = l.readNumber()
            return tok
        } else {
            tok = newToken(token.ILLEGAL, l.ch)
        }
    }
// [...]
}

func (l *Lexer) readNumber() string {
    position := l.position
    for isDigit(l.ch) {
        l.readChar()
    }
    return l.input[position:l.position]
}

func isDigit(ch byte) bool {
    return '0' <= ch && ch <= '9'
}



The isDigit function is as simple as isLetter. It just returns whether
the passed in byte is a Latin digit between 0 and 9.

With this added, our tests pass:

I don’t know if you noticed, but we simplified things a lot in
readNumber. We only read in integers. What about floats? Or numbers
in hex notation? Octal notation? We ignore them and just say that
Monkey doesn’t support this. Of course, the reason for this is again
the educational aim and limited scope of this book.

It’s time to pop the champagne and celebrate: we successfully turned
the small subset of the Monkey language we used in the our test
case into tokens!

With this victory under our belt, it’s easy to extend the lexer so it can
tokenize a lot more of Monkey source code.

$ go test ./lexer
ok      monkey/lexer 0.008s



1.4 - Extending our Token Set and Lexer
In order to eliminate the need to jump between packages when later
writing our parser, we need to extend our lexer so it can recognize
more of the Monkey language and output more tokens. So in this
section we will add support for ==, !, !=, -, /, *, <, > and the keywords
true, false, if, else and return.

The new tokens we will need to add, build and output can be
classified as one of these three: one-character token (e.g.  -), two-
character token (e.g. ==) and keyword token (e.g. return). We already
know how to handle one-character and keyword tokens, so we add
support for these first, before extending the lexer for two-character
tokens.

Adding support for -, /, *, < and > is trivial. The first thing we need to
do, of course, is modify the input of our test case in
lexer/lexer_test.go to include these characters. Just like we did
before. In the code accompanying this chapter you can also find the
extended tests table, which I won’t show in the remainder of this
chapter, in order to save space and to keep you from getting bored.

// lexer/lexer_test.go

func TestNextToken(t *testing.T) {
    input := `let five = 5;
let ten = 10;

let add = fn(x, y) {
  x + y;
};

let result = add(five, ten);
!-/*5;
5 < 10 > 5;
`



Note that although the input looks like an actual piece of Monkey
source code, some lines don’t really make sense, with gibberish like
!-/*5. That’s okay. The lexer’s job is not to tell us whether code
makes sense, works or contains errors. That comes in a later stage.
The lexer should only turn this input into tokens. For that reason the
test cases I write for lexers cover all tokens and also try to provoke
off-by-one errors, edge cases at end-of-file, newline handling, multi-
digit number parsing and so on. That’s why the “code” looks like
gibberish.

Running the test we get undefined: errors, because the tests contain
references to undefined TokenTypes. To fix them we add the following
constants to token/token.go:

With the new constants added, the tests still fail, because we don’t
return the tokens with the expected TokenTypes.

// [...]
}

// token/token.go

const (
// [...]

    // Operators
    ASSIGN   = "="
    PLUS     = "+"
    MINUS    = "-"
    BANG     = "!"
    ASTERISK = "*"
    SLASH    = "/"

    LT = "<"
    GT = ">"

// [...]
)

$ go test ./lexer
--- FAIL: TestNextToken (0.00s)



Turning these tests from failing to passing requires us to extend our
switch statement in the NextToken() method of Lexer:

The tokens are now added and the cases of the switch statement
have been reordered to reflect the structure of the constants in
token/token.go. This small change makes our tests pass:

  lexer_test.go:84: tests[36] - tokentype wrong. expected="!", got="ILLEGAL"
FAIL
FAIL    monkey/lexer 0.007s

// lexer/lexer.go

func (l *Lexer) NextToken() token.Token {
// [...]
    switch l.ch {
    case '=':
        tok = newToken(token.ASSIGN, l.ch)
    case '+':
        tok = newToken(token.PLUS, l.ch)
    case '-':
        tok = newToken(token.MINUS, l.ch)
    case '!':
        tok = newToken(token.BANG, l.ch)
    case '/':
        tok = newToken(token.SLASH, l.ch)
    case '*':
        tok = newToken(token.ASTERISK, l.ch)
    case '<':
        tok = newToken(token.LT, l.ch)
    case '>':
        tok = newToken(token.GT, l.ch)
    case ';':
        tok = newToken(token.SEMICOLON, l.ch)
    case ',':
        tok = newToken(token.COMMA, l.ch)
// [...]
}

$ go test ./lexer
ok      monkey/lexer 0.007s



The new one-character tokens have been successfully added. Next
step: add the new keywords true, false, if, else and return.

Again, the first step is to extend the input in our test to include these
new keywords. Here is what the input in TestNextToken looks like
now:

The tests do not even compile since the references in the test
expectations to the new keywords are undefined. Fixing that, again,
means just adding new constants and in this case, adding the
keywords to the lookup table for LookupIdent().

// lexer/lexer_test.go

func TestNextToken(t *testing.T) {
    input := `let five = 5;
let ten = 10;

let add = fn(x, y) {
  x + y;
};

let result = add(five, ten);
!-/*5;
5 < 10 > 5;

if (5 < 10) {
    return true;
} else {
    return false;
}`
// [...]
}

// token/token.go

const (
// [...]

    // Keywords
    FUNCTION = "FUNCTION"
    LET      = "LET"



And it turns out that we not only fixed the compilation error by fixing
references to undefined variables, we even made the tests pass:

The lexer now recognizes the new keywords and the necessary
changes were trivial, easy to predict and easy to make. I’d say a pat
on the back is in order. We did a great job!

But before we can move onto the next chapter and start with our
parser, we still need to extend the lexer so it recognizes tokens that
are composed of two characters. The tokens we want to support look
like this in the source code: == and !=.

At first glance you may be thinking: “why not add a new case to our
switch statement and be done with it?” Since our switch statement
takes the current character l.ch as the expression to compare
against the cases, we can’t just add new cases like case "==" - the
compiler won’t let us. We can’t compare our l.ch byte with strings like
"==".

    TRUE     = "TRUE"
    FALSE    = "FALSE"
    IF       = "IF"
    ELSE     = "ELSE"
    RETURN   = "RETURN"
)

var keywords = map[string]TokenType{
    "fn":     FUNCTION,
    "let":    LET,
    "true":   TRUE,
    "false":  FALSE,
    "if":     IF,
    "else":   ELSE,
    "return": RETURN,
}

$ go test ./lexer
ok      monkey/lexer 0.007s



What we can do instead is to reuse the existing branches for '=' and
'!' and extend them. So what we’re going to do is to look ahead in
the input and then determine whether to return a token for = or ==.
After extending input in lexer/lexer_test.go again, it now looks like
this:

Before we start working on the switch statement in NextToken(), we
need to add a new helper method defined on *Lexer called
peekChar():

// lexer/lexer_test.go

func TestNextToken(t *testing.T) {
    input := `let five = 5;
let ten = 10;

let add = fn(x, y) {
  x + y;
};

let result = add(five, ten);
!-/*5;
5 < 10 > 5;

if (5 < 10) {
    return true;
} else {
    return false;
}

10 == 10;
10 != 9;
`
// [...]
}

// lexer/lexer.go

func (l *Lexer) peekChar() byte {
    if l.readPosition >= len(l.input) {
        return 0
    } else {



peekChar() is really similar to readChar(), except that it doesn’t
increment l.position and l.readPosition. We only want to “peek”
ahead in the input and not move around in it, so we know what a call
to readChar() would return. Most lexers and parser have such a
“peek” function that looks ahead and most of the time it only returns
the immediately next character. The difficulty of parsing different
languages often comes down to how far you have to peek ahead (or
look backwards!) in the source code to make sense of it.

With peekChar() added, the code with the updated test input doesn’t
compile. Of course, since we’re referencing undefined token
constants in the tests. Fixing that, again, is easy:

With the references to token.EQ and token.NOT_EQ in the tests for the
lexer fixed, running go test now returns the correct failure message:

When the lexer comes upon a == in the input it creates two
token.ASSIGN tokens instead of one token.EQ token. The solution is to
use our new peekChar() method. In the branches of the switch

        return l.input[l.readPosition]
    }
}

// token/token.go

const (
// [...]

    EQ     = "=="
    NOT_EQ = "!="

// [...]
)

$ go test ./lexer
--- FAIL: TestNextToken (0.00s)
  lexer_test.go:118: tests[66] - tokentype wrong. expected="==", got="="
FAIL
FAIL    monkey/lexer 0.007s



statement for '=' and '!' we “peek” ahead. If the next token is also a
= we create either a token.EQ or a token.NOT_EQ token:

Note that we save l.ch in a local variable before calling l.readChar()
again. This way we don’t lose the current character and can safely
advance the lexer so it leaves the NextToken() with l.position and
l.readPosition in the correct state. If we were to start supporting
more two-character tokens in Monkey, we should probably abstract
the behaviour away in a method called makeTwoCharToken that peeks
and advances if it found the right token. Because those two branches
look awfully similar. For now though == and != are the only two-
character tokens in Monkey, so let’s leave it as it is and run our tests
again to make sure it works:

// lexer/lexer.go

func (l *Lexer) NextToken() token.Token {
// [...]
    switch l.ch {
    case '=':
        if l.peekChar() == '=' {
            ch := l.ch
            l.readChar()
            literal := string(ch) + string(l.ch)
            tok = token.Token{Type: token.EQ, Literal: literal}
        } else {
            tok = newToken(token.ASSIGN, l.ch)
        }
// [...]
    case '!':
        if l.peekChar() == '=' {
            ch := l.ch
            l.readChar()
            literal := string(ch) + string(l.ch)
            tok = token.Token{Type: token.NOT_EQ, Literal: literal}
        } else {
            tok = newToken(token.BANG, l.ch)
        }
// [...]
}



They pass! We did it! The lexer can now produce the extended set of
tokens and we’re ready to write our parser. But before we do that,
let’s lay another ground stone we can build upon in the coming
chapters…

$ go test ./lexer
ok      monkey/lexer 0.006s



1.5 - Start of a REPL
The Monkey language needs a REPL. REPL stands for “Read Eval
Print Loop” and you probably know what it is from other interpreted
languages: Python has a REPL, Ruby has one, every JavaScript
runtime has one, most Lisps have one and a lot of other languages
too. Sometimes the REPL is called “console”, sometimes “interactive
mode”. The concept is the same: the REPL reads input, sends it to
the interpreter for evaluation, prints the result/output of the interpreter
and starts again. Read, Eval, Print, Loop.

We don’t know how to fully “Eval” Monkey source code yet. We only
have one part of the process that hides behind “Eval”: we can
tokenize Monkey source code. But we also know how to read and
print something, and I don’t think looping poses a problem.

Here is a REPL that tokenizes Monkey source code and prints the
tokens. Later on, we will expand on this and add parsing and
evaluation to it.

// repl/repl.go

package repl

import (
    "bufio"
    "fmt"
    "io"
    "monkey/lexer"
    "monkey/token"
)

const PROMPT = ">> "

func Start(in io.Reader, out io.Writer) {
    scanner := bufio.NewScanner(in)

    for {
        fmt.Fprintf(out, PROMPT)



This is all pretty straightforward: read from the input source until
encountering a newline, take the just read line and pass it to an
instance of our lexer and finally print all the tokens the lexer gives us
until we encounter EOF.

In a main.go file (which we’ve been missing until now!) we welcome
the user of the REPL and start it:

        scanned := scanner.Scan()
        if !scanned {
            return
        }

        line := scanner.Text()
        l := lexer.New(line)

        for tok := l.NextToken(); tok.Type != token.EOF; tok = l.NextToken() {
            fmt.Fprintf(out, "%+v\n", tok)
        }
    }
}

// main.go

package main

import (
    "fmt"
    "os"
    "os/user"
    "monkey/repl"
)

func main() {
    user, err := user.Current()
    if err != nil {
        panic(err)
    }
    fmt.Printf("Hello %s! This is the Monkey programming language!\n",
        user.Username)
    fmt.Printf("Feel free to type in commands\n")
    repl.Start(os.Stdin, os.Stdout)
}



And with that we can now interactively produce tokens:

Perfect! And now it’s time to start parsing these tokens.

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> let add = fn(x, y) { x + y; };
{Type:LET Literal:let}
{Type:IDENT Literal:add}
{Type:= Literal:=}
{Type:FUNCTION Literal:fn}
{Type:( Literal:(}
{Type:IDENT Literal:x}
{Type:, Literal:,}
{Type:IDENT Literal:y}
{Type:) Literal:)}
{Type:{ Literal:{}
{Type:IDENT Literal:x}
{Type:+ Literal:+}
{Type:IDENT Literal:y}
{Type:; Literal:;}
{Type:} Literal:}}
{Type:; Literal:;}
>>



Parsing



2.1 - Parsers
Everyone who has ever programmed has probably heard about
parsers, mostly by encountering a “parser error”. Or maybe heard or
even said something like “we need to parse this”, “after it’s parsed”,
“the parser blows up with this input”. The word “parser” is as common
as “compiler”, “interpreter” and “programming language”. Everyone
knows that parsers exist. They have to, right? Because who else
would be responsible for “parser errors”?

But what is a parser exactly? What is its job and how does it do it?
This is what Wikipedia has to say:

A parser is a software component that takes input data
(frequently text) and builds a data structure – often some kind of
parse tree, abstract syntax tree or other hierarchical structure –
giving a structural representation of the input, checking for
correct syntax in the process. […] The parser is often preceded
by a separate lexical analyser, which creates tokens from the
sequence of input characters;

For a Wikipedia article about a computer science topic this excerpt is
remarkably easy to understand. We can even recognize our lexer in
there!

A parser turns its input into a data structure that represents the input.
That sounds pretty abstract, so let me illustrate this with an example.
Here is a little bit of JavaScript:

> var input = '{"name": "Thorsten", "age": 28}';
> var output = JSON.parse(input);
> output
{ name: 'Thorsten', age: 28 }
> output.name
'Thorsten'
> output.age

https://en.wikipedia.org/wiki/Parsing#Parser


Our input is just some text, a string. We then pass it to a parser
hidden behind the JSON.parse function and receive an output value.
This output is the data structure that represents the input: a
JavaScript object with two fields named name and age, their values
also corresponding to the input. We can now easily work with this
data structure as demonstrated by accessing the name and age fields.

“But”, I hear you say, “a JSON parser isn’t the same as a parser for a
programming language! They’re different!” I can see where you’re
coming from with this, but no, they are not different. At least not on a
conceptual level. A JSON parser takes text as input and builds a data
structure that represents the input. That’s exactly what the parser of a
programming language does. The difference is that in the case of a
JSON parser you can see the data structure when looking at the
input. Whereas if you look at this

it’s not immediately obvious how this could be represented with a
data structure. This is why, at least for me, they seemed different on a
deeper, conceptional level. My guess is that this perception of
conceptional difference is mainly due to a lack of familiarity with
programming language parsers and the data structures they produce.
I have a lot more experience with writing JSON, parsing it with a
parser and inspecting the output of the parser than with parsing
programming languages. As users of programming languages we
seldom get to see or interact with the parsed source code, with its
internal representation. Lisp programmers are the exception to the
rule – in Lisp the data structures used to represent the source code
are the ones used by a Lisp user. The parsed source code is easily
accessible as data in the program. “Code is data, data is code” is
something you hear a lot from Lisp programmers.

28
>

if ((5 + 2 * 3) == 91) { return computeStuff(input1, input2); }



So, in order to bring our conceptual understanding of programming
language parsers up to the level of our familiarity and intuitiveness
with parsers of serialization languages (like JSON, YAML, TOML, INI,
and so on) we need to understand the data structures they produce.

In most interpreters and compilers the data structure used for the
internal representation of the source code is called a “syntax tree” or
an “abstract syntax tree” (AST for short). The “abstract” is based on
the fact that certain details visible in the source code are omitted in
the AST. Semicolons, newlines, whitespace, comments, braces,
bracket and parentheses – depending on the language and the
parser these details are not represented in the AST, but merely guide
the parser when constructing it.

A fact to note is that there is not one true, universal AST format that’s
used by every parser. Their implementations are all pretty similar, the
concept is the same, but they differ in details. The concrete
implementation depends on the programming language being
parsed.

A small example should make things clearer. Let’s say that we have
the following source code:

And let’s say we are using JavaScript, have a MagicLexer, a
MagicParser and the AST is built out of JavaScript objects, then the
parsing step might produce something like this:

if (3 * 5 > 10) {
  return "hello";
} else {
  return  "goodbye";
}

> var input = 'if (3 * 5 > 10) { return "hello"; } else { return "goodbye"; }';
> var tokens = MagicLexer.parse(input);
> MagicParser.parse(tokens);
{
  type: "if-statement",
  condition: {



As you can see, the output of the parser, the AST, is pretty abstract:
there are no parentheses, no semicolons and no braces. But it does
represent the source code pretty accurately, don’t you think? I bet that
you can now “see” the AST structure when looking back at the source
code!

So, this is what parsers do. They take source code as input (either as
text or tokens) and produce a data structure which represents this
source code. While building up the data structure, they unavoidably
analyse the input, checking that it conforms to the expected structure.
Thus the process of parsing is also called syntactic analysis.

In this chapter, we’re going to write our parser for the Monkey
programming language. Its input will be the tokens we defined in the
previous chapter, produced by the lexer we already wrote. We will
define our own AST, suited to our needs as interpreters of the
Monkey programming language, and construct instances of this AST
while recursively parsing tokens.

    type: "operator-expression",
    operator: ">",
    left: {
      type: "operator-expression",
      operator: "*",
      left: { type: "integer-literal", value: 3 },
      right: { type: "integer-literal", value: 5 }
    },
    right: { type: "integer-literal", value: 10 }
  },
  consequence: {
    type: "return-statement",
    returnValue: { type: "string-literal", value: "hello" }
  },
  alternative: {
    type: "return-statement",
    returnValue: { type: "string-literal", value: "goodbye" }
  }
}



2.2 - Why not a parser generator?
Maybe you’ve already heard about parser generators, like the tools
yacc, bison or ANTLR. Parser generators are tools that, when fed
with a formal description of a language, produce parsers as their
output. This output is code that can then be compiled/interpreted and
itself fed with source code as input to produce a syntax tree.

There are a lot of parser generators, differing in the format of the
input they accept and the language of the output they produce. The
majority of them use a context-free grammar (CFG) as their input. A
CFG is a set of rules that describe how to form correct (valid
according to the syntax) sentences in a language. The most common
notational formats of CFGs are the Backus-Naur Form (BNF) or the
Extended Backus-Naur Form (EBNF).

PrimaryExpression ::= "this"
                    | ObjectLiteral
                    | ( "(" Expression ")" )
                    | Identifier
                    | ArrayLiteral
                    | Literal
Literal ::= ( <DECIMAL_LITERAL>
            | <HEX_INTEGER_LITERAL>
            | <STRING_LITERAL>
            | <BOOLEAN_LITERAL>
            | <NULL_LITERAL>
            | <REGULAR_EXPRESSION_LITERAL> )
Identifier ::= <IDENTIFIER_NAME>
ArrayLiteral ::= "[" ( ( Elision )? "]"
                 | ElementList Elision "]"
                 | ( ElementList )? "]" )
ElementList ::= ( Elision )? AssignmentExpression
                ( Elision AssignmentExpression )*
Elision ::= ( "," )+
ObjectLiteral ::= "{" ( PropertyNameAndValueList )? "}"
PropertyNameAndValueList ::= PropertyNameAndValue ( "," PropertyNameAndValue
                                                  | "," )*
PropertyNameAndValue ::= PropertyName ":" AssignmentExpression



This is part of a full description of the EcmaScript syntax, in BNF. A
parser generator would take something like this and turn it into
compilable C code, for example.

Maybe you’ve also heard that you should use a parser generator
instead of writing a parser by hand. “Just skip this part”, they say, “it’s
a solved problem.” The reason for this recommendation is that
parsers are exceptionally well suited to being automatically
generated. Parsing is one of the most well-understood branches of
computer science and really smart people have already invested a lot
of time into the problems of parsing. The results of their work are
CFG, BNF, EBNF, parser generators and advanced parsing
techniques used in them. Why shouldn’t you take advantage of that?

I don’t think that learning to write your own parser is a waste of time. I
actually think it’s immensely valuable. Only after having written your
own parser, or at least attempted to, will you see the benefits parser
generators provide, the drawbacks they have and the problems they
solve. For me the concept of a parser generator only “clicked” after I
wrote my first parser. I looked at it and only then really and truly
understood how it’s possible to generate this code automatically.

Most people that recommend using a parser generator, when others
want to get started with interpreters and compilers, only do so
because they’ve written a parser themselves before. They’ve seen
the problems and solutions available and decided it’s better to use an
existing tool for the job. And they’re correct - when you want to get
something done and are in a production environment, where
correctness and robustness are priorities. Of course you shouldn’t try
to write your own parser then, especially not if you’ve never written
one before.

PropertyName ::= Identifier
              | <STRING_LITERAL>
              | <DECIMAL_LITERAL>

http://tomcopeland.blogs.com/EcmaScript.html


But we are here to learn, we want to understand how parsers work.
And it’s my opinion that the best way to do that is by getting our
hands dirty and writing a parser ourselves. Also, I think it’s immense
fun.



2.3 - Writing a Parser for the Monkey
Programming Language
There are two main strategies when parsing a programming
language: top-down parsing or bottom-up parsing. A lot of slightly
different forms of each strategy exist. For example, “recursive
descent parsing”, “Early parsing” or “predictive parsing” are all
variations of top down parsing.

The parser we are going to write is a recursive descent parser. And in
particular, it’s a “top down operator precedence” parser, sometimes
called “Pratt parser”, after its inventor Vaughan Pratt.

I won’t go into the details of different parsing strategies here, because
this is neither the place nor am I qualified enough to accurately
describe them. Instead, let me just say, that the difference between
top down and bottom up parsers is that the former starts with
constructing root node of the AST and then descends while the latter
does it the other way around. A recursive descent parser, which
works from the top down, is often recommended for newcomers to
parsing, since it closely mirrors the way we think about ASTs and
their construction. I personally found the recursive approach starting
at the root node really nice, even though it took writing some code
before the concept really clicked. Which is another reason to get
started with the code instead of delving into parsing strategies.

Now, when writing a parser ourselves, we have to make some trade-
offs, yes. Our parser won’t be the fastest of all time, we won’t have
formal proof of its correctness and its error-recovery process and
detection of erroneous syntax won’t be bullet proof. The last one is
especially hard to get right without extensive study of the theory
surrounding parsing. But what we’re going to have is a fully working
parser for the Monkey programming language that’s open for



extensions and improvements, easy to understand and a great start
to further dive into the topic of parsing, if one were so inclined.

We’re going to start by parsing statements: let and return statements.
When we can parse statements and the basic structure of our parser
stands, we will look at expressions and how to parse these (this is
where Vaughan Pratt will come into play). Afterwards we extend the
parser to make it capable of parsing a large subset of the Monkey
programming language. As we go along we build up the necessary
structures for our AST.



2.4 - Parser’s first steps: parsing let
statements
In Monkey, variable bindings are statements of the following form:

These statements are called “let statements” and bind a value to the
given name. let x = 5; binds the value 5 to the name x. Our job in
this section is to parse let statements correctly. For now we’re going
to skip parsing the expressions that produce the value of a given
variable binding and come back to this later - as soon as we know
how to parse expressions on their own.

What does it mean to parse let statements correctly? It means that
the parser produces an AST that accurately represents the
information contained in the original let statement. That sounds
reasonable, but we don’t have an AST yet, nor do we know what it
should look like. So our first task is to take a close look at Monkey
source code and see how it’s structured, so that we can define the
necessary parts of an AST that’s able to accurately represent let
statements.

Here is a fully valid program written in Monkey:

let x = 5;
let y = 10;
let foobar = add(5, 5);
let barfoo = 5 * 5 / 10 + 18 - add(5, 5) + multiply(124);
let anotherName = barfoo;

let x = 10;
let y = 15;

let add = fn(a, b) {
  return a + b;
};



Programs in Monkey are a series of statements. In this example we
can see three statements, three variable bindings - let statements - of
the following form:

A let statement in Monkey consists of two changing parts: an
identifier and an expression. In the example above x, y and add are
identifiers. 10, 15 and the function literal are expressions.

Before we go on, a few words about the difference between
statements and expressions are needed. Expressions produce
values, statements don’t. let x = 5 doesn’t produce a value,
whereas 5 does (the value it produces is 5). A return 5; statement
doesn’t produce a value, but add(5, 5) does. This distinction -
expressions produce values, statements don’t - changes depending
on who you ask, but it’s good enough for our needs.

What exactly an expression is or a statement, what produces values
and what doesn’t, depends on the programming language. In some
languages function literals (e.g.: fn(x, y) { return x + y; }) are
expressions and can be used in any place where any other
expression is allowed. In other programming languages though
function literals can only be part of a function declaration statement,
in the top level of the program. Some languages also have “if
expressions”, where conditionals are expressions and produce a
value. This is entirely dependent on the choices the language
designers made. As you’ll see, a lot of things in Monkey are
expressions, including function literals.

Back to our AST. Looking at the example above, we can see that it
needs two different types of nodes: expressions and statements.
Take a look at the start of our AST:

let <identifier> = <expression>;

// ast/ast.go

package ast



Here we have three interfaces called Node, Statement and Expression.
Every node in our AST has to implement the Node interface, meaning
it has to provide a TokenLiteral() method that returns the literal
value of the token it’s associated with. TokenLiteral() will be used
only for debugging and testing. The AST we are going to construct
consists solely of Nodes that are connected to each other - it’s a tree
after all. Some of these nodes implement the Statement and some the
Expression interface. These interfaces only contain dummy methods
called statementNode and expressionNode respectively. They are not
strictly necessary but help us by guiding the Go compiler and
possibly causing it to throw errors when we use a Statement where an
Expression should’ve been used, and vice versa.

And here is our first implementation of Node:

type Node interface {
    TokenLiteral() string
}

type Statement interface {
    Node
    statementNode()
}

type Expression interface {
    Node
    expressionNode()
}

// ast/ast.go

type Program struct {
    Statements []Statement
}

func (p *Program) TokenLiteral() string {
    if len(p.Statements) > 0 {
        return p.Statements[0].TokenLiteral()
    } else {
        return ""



This Program node is going to be the root node of every AST our
parser produces. Every valid Monkey program is a series of
statements. These statements are contained in the
Program.Statements, which is just a slice of AST nodes that
implement the Statement interface.

With these basic building blocks for our AST construction defined,
let’s think about what a node for a variable binding in the form of let
x = 5; might look like. Which fields should it have? Definitely one for
the name of the variable. And it also needs a field that points to the
expression on the right side of the equal sign. It needs to be able to
point to any expression. It can’t just point to a literal value (the integer
literal 5 in this case), since every expression is valid after the equal
sign: let x = 5 * 5 is as valid as let y = add(2, 2) * 5 / 10;. And
then the node also needs to keep track of the token the AST node is
associated with, so we can implement the TokenLiteral() method.
That makes three fields: one for the identifier, one for the expression
that produces the value in the let statement and one for the token.

    }
}

// ast/ast.go

import "monkey/token"

// [...]

type LetStatement struct {
    Token token.Token // the token.LET token
    Name  *Identifier
    Value Expression
}

func (ls *LetStatement) statementNode()       {}
func (ls *LetStatement) TokenLiteral() string { return ls.Token.Literal }

type Identifier struct {
    Token token.Token // the token.IDENT token
    Value string



LetStatement has the fields we need: Name to hold the identifier of the
binding and Value for the expression that produces the value. The
two methods statementNode and TokenLiteral satisfy the Statement
and Node interfaces respectively.

To hold the identifier of the binding, the x in let x = 5;, we have the
Identifier struct type, which implements the Expression interface.
But the identifier in a let statement doesn’t produce a value, right? So
why is it an Expression? It’s to keep things simple. Identifiers in other
parts of a Monkey program do produce values, e.g.: let x =
valueProducingIdentifier;. And to keep the number of different node
types small, we’ll use Identifier here to represent the name in a
variable binding and later reuse it, to represent an identifier as part of
or as a complete expression.

With Program, LetStatement and Identifier defined this piece of
Monkey source code

could be represented by an AST looking like this:

}

func (i *Identifier) expressionNode()      {}
func (i *Identifier) TokenLiteral() string { return i.Token.Literal }

let x = 5;



 

Now that we know what it’s supposed to look like, the next task is to
construct such an AST. So, without further ado here is the beginning
of our parser:

// parser/parser.go

package parser

import (
    "monkey/ast"
    "monkey/lexer"
    "monkey/token"
)

type Parser struct {
    l *lexer.Lexer

    curToken  token.Token
    peekToken token.Token
}



The Parser has three fields: l, curToken and peekToken. l is a pointer
to an instance of the lexer, on which we repeatedly call NextToken()
to get the next token in the input. curToken and peekToken act exactly
like the two “pointers” our lexer has: position and readPosition. But
instead of pointing to a character in the input, they point to the current
and the next token. Both are important: we need to look at the
curToken, which is the current token under examination, to decide
what to do next, and we also need peekToken for this decision if
curToken doesn’t give us enough information. Think of a single line
only containing 5;. Then curToken is a token.INT and we need
peekToken to decide whether we are at the end of the line or if we are
at just the start of an arithmetic expression.

The New function is pretty self-explanatory and the nextToken method
is a small helper that advances both curToken and peekToken. But
ParseProgram is empty, for now.

Now before we start writing tests and filling out the ParseProgram
method I want to show you the basic idea and structure behind a
recursive descent parser. That makes it a lot easier to understand our

func New(l *lexer.Lexer) *Parser {
    p := &Parser{l: l}

    // Read two tokens, so curToken and peekToken are both set
    p.nextToken()
    p.nextToken()

    return p
}

func (p *Parser) nextToken() {
    p.curToken = p.peekToken
    p.peekToken = p.l.NextToken()
}

func (p *Parser) ParseProgram() *ast.Program {
    return nil
}



own parser later on. What follows are the major parts of such a parser
in pseudocode. Read this carefully and try to understand what
happens in the parseProgram function:

function parseProgram() {
  program = newProgramASTNode()

  advanceTokens()

  for (currentToken() != EOF_TOKEN) {
    statement = null

    if (currentToken() == LET_TOKEN) {
      statement = parseLetStatement()
    } else if (currentToken() == RETURN_TOKEN) {
      statement = parseReturnStatement()
    } else if (currentToken() == IF_TOKEN) {
      statement = parseIfStatement()
    }

    if (statement != null) {
      program.Statements.push(statement)
    }

    advanceTokens()
  }

  return program
}

function parseLetStatement() {
  advanceTokens()

  identifier = parseIdentifier()

  advanceTokens()

  if currentToken() != EQUAL_TOKEN {
    parseError("no equal sign!")
    return null
  }

  advanceTokens()



Since this is pseudocode there are a lot of omissions, of course. But
the basic idea behind recursive-descent parsing is there. The entry
point is parseProgram and it constructs the root node of the AST

  value = parseExpression()

  variableStatement = newVariableStatementASTNode()
  variableStatement.identifier = identifier
  variableStatement.value = value
  return variableStatement
}

function parseIdentifier() {
  identifier = newIdentifierASTNode()
  identifier.token = currentToken()
  return identifier
}

function parseExpression() {
  if (currentToken() == INTEGER_TOKEN) {
    if (nextToken() == PLUS_TOKEN)  {
      return parseOperatorExpression()
    } else if (nextToken() == SEMICOLON_TOKEN) {
      return parseIntegerLiteral()
    }
  } else if (currentToken() == LEFT_PAREN) {
    return parseGroupedExpression()
  }
// [...]
}

function parseOperatorExpression() {
  operatorExpression = newOperatorExpression()

  operatorExpression.left = parseIntegerLiteral()
  advanceTokens()
  operatorExpression.operator = currentToken()
  advanceTokens()
  operatorExpression.right = parseExpression()

  return operatorExpression
}
// [...]



(newProgramASTNode()). It then builds the child nodes, the statements,
by calling other functions that know which AST node to construct
based on the current token. These other functions call each other
again, recursively.

The most recursive part of this is in parseExpression and is only
hinted at. But we can already see that in order to parse an expression
like 5 + 5, we need to first parse 5 + and then call parseExpression()
again to parse the rest, since after the + might be another operator
expression, like this: 5 + 5 * 10. We will get to this later and look at
expression parsing in detail, since it’s probably the most complicated
but also the most beautiful part of the parser, making heavy use of
“Pratt parsing”.

But for now, we can already see what the parser has to do. It
repeatedly advances the tokens and checks the current token to
decide what to do next: either call another parsing function or throw
an error. Each function then does its job and possibly constructs an
AST node so that the “main loop” in parseProgram() can advance the
tokens and decide what to do again.

If you looked at that pseudocode and thought “Well, that’s actually
pretty easy to understand” I have great news for you: our
ParseProgram method and the parser will look pretty similar! Let’s get
to work!

Again, we’re starting with a test before we flesh out ParseProgram.
Here is a test case to make sure that the parsing of let statements
works:

// parser/parser_test.go

package parser

import (
    "testing"
    "monkey/ast"
    "monkey/lexer"



)

func TestLetStatements(t *testing.T) {
    input := `
let x = 5;
let y = 10;
let foobar = 838383;
`
    l := lexer.New(input)
    p := New(l)

    program := p.ParseProgram()
    if program == nil {
        t.Fatalf("ParseProgram() returned nil")
    }
    if len(program.Statements) != 3 {
        t.Fatalf("program.Statements does not contain 3 statements. got=%d",
            len(program.Statements))
    }

    tests := []struct {
        expectedIdentifier string
    }{
        {"x"},
        {"y"},
        {"foobar"},
    }

    for i, tt := range tests {
        stmt := program.Statements[i]
        if !testLetStatement(t, stmt, tt.expectedIdentifier) {
            return
        }
    }
}

func testLetStatement(t *testing.T, s ast.Statement, name string) bool {
    if s.TokenLiteral() != "let" {
        t.Errorf("s.TokenLiteral not 'let'. got=%q", s.TokenLiteral())
        return false
    }

    letStmt, ok := s.(*ast.LetStatement)
    if !ok {
        t.Errorf("s not *ast.LetStatement. got=%T", s)



The test case follows the same principle as the test for our lexer and
pretty much every other unit test we’re going to write: we provide
Monkey source code as input and then set expectations on what we
want the AST - that’s produced by the parser - to look like. We do this
by checking as many fields of the AST nodes as possible to make
sure that nothing is missing. I found that a parser is a breeding
ground for off-by-one bugs and the more tests and assertions it has
the better.

I choose not to mock or stub out the lexer and provide source code as
input instead of tokens, since that makes the tests much more
readable and understandable. Of course there’s the problem of bugs
in the lexer blowing up tests for the parser and generating unneeded
noise, but I deem the risk too minimal, especially judged against the
advantages of using readable source code as input.

There are two noteworthy things about this test case. The first one is
that we ignore the Value field of the *ast.LetStatement. Why don’t we
check if the integer literals (5, 10, …) are parsed correctly? Answer:
we’re going to! But first we need to make sure that the parsing of let
statements works and ignore the Value.

        return false
    }

    if letStmt.Name.Value != name {
        t.Errorf("letStmt.Name.Value not '%s'. got=%s", name, letStmt.Name.Value)
        return false
    }

    if letStmt.Name.TokenLiteral() != name {
        t.Errorf("letStmt.Name.TokenLiteral() not '%s'. got=%s",
            name, letStmt.Name.TokenLiteral())
        return false
    }

    return true
}



The second one is the helper function testLetStatement. It might
seem like over-engineering to use a separate function, but we’re
going to need this function soon enough. And then it’s going to make
our test cases a lot more readable than lines and lines of type
conversions strewn about.

As an aside: we won’t look at all of the parser tests in this chapter,
since they are just too long. But the code provided with the book
contains all of them.

That being said, the tests fail as expected:

It’s time to flesh out the ParseProgram() method of the Parser.

Doesn’t this look really similar to the parseProgram() pseudocode
function we saw earlier? See! I told you! And what it does is the same
too.

$ go test ./parser
--- FAIL: TestLetStatements (0.00s)
  parser_test.go:20: ParseProgram() returned nil
FAIL
FAIL    monkey/parser    0.007s

// parser/parser.go

func (p *Parser) ParseProgram() *ast.Program {
    program := &ast.Program{}
    program.Statements = []ast.Statement{}

    for p.curToken.Type != token.EOF {
        stmt := p.parseStatement()
        if stmt != nil {
            program.Statements = append(program.Statements, stmt)
        }
        p.nextToken()
    }

    return program
}



The first thing ParseProgram does is construct the root node of the
AST, an *ast.Program. It then iterates over every token in the input
until it encounters an token.EOF token. It does this by repeatedly
calling nextToken, which advances both p.curToken and p.peekToken.
In every iteration it calls parseStatement, whose job it is to parse a
statement. If parseStatement returned something other than nil, a
ast.Statement, its return value is added to Statements slice of the
AST root node. When nothing is left to parse the *ast.Program root
node is returned.

The parseStatement method looks like this:

Don’t worry, the switch statement will get more branches. But for now,
it only calls parseLetStatement when it encounters a token.LET token.
And parseLetStatement is the method where we turn our tests from
red to green:

// parser/parser.go

func (p *Parser) parseStatement() ast.Statement {
    switch p.curToken.Type {
    case token.LET:
        return p.parseLetStatement()
    default:
        return nil
    }
}

// parser/parser.go

func (p *Parser) parseLetStatement() *ast.LetStatement {
    stmt := &ast.LetStatement{Token: p.curToken}

    if !p.expectPeek(token.IDENT) {
        return nil
    }

    stmt.Name = &ast.Identifier{Token: p.curToken, Value: p.curToken.Literal}

    if !p.expectPeek(token.ASSIGN) {
        return nil



It works! The tests are green:

We can parse let statements! That’s amazing! But, wait, how?

Let’s start with parseLetStatement. It constructs an *ast.LetStatement
node with the token it’s currently sitting on (a token.LET token) and
then advances the tokens while making assertions about the next
token with calls to expectPeek. First it expects a token.IDENT token,
which it then uses to construct an *ast.Identifier node. Then it
expects an equal sign and finally it jumps over the expression
following the equal sign until it encounters a semicolon. The skipping

    }

    // TODO: We're skipping the expressions until we
    // encounter a semicolon
    for !p.curTokenIs(token.SEMICOLON) {
        p.nextToken()
    }

    return stmt
}

func (p *Parser) curTokenIs(t token.TokenType) bool {
    return p.curToken.Type == t
}

func (p *Parser) peekTokenIs(t token.TokenType) bool {
    return p.peekToken.Type == t
}

func (p *Parser) expectPeek(t token.TokenType) bool {
    if p.peekTokenIs(t) {
        p.nextToken()
        return true
    } else {
        return false
    }
}

$ go test ./parser
ok      monkey/parser   0.007s



of expressions will be replaced, of course, as soon as we know how
to parse them.

The curTokenIs and peekTokenIs methods do not need much of an
explanation. They are useful methods that we will see again and
again when fleshing out the parser. Already, we can replace the
p.curToken.Type != token.EOF condition of the for-loop in
ParseProgram with !p.curTokenIs(token.EOF).

Instead of dissecting these tiny methods, let’s talk about expectPeek.
The expectPeek method is one of the “assertion functions” nearly all
parsers share. Their primary purpose is to enforce the correctness of
the order of tokens by checking the type of the next token. Our
expectPeek here checks the type of the peekToken and only if the type
is correct does it advance the tokens by calling nextToken. As you’ll
see, this is something a parser does a lot.

But what happens if we encounter a token in expectPeek that’s not of
the expected type? At the moment, we just return nil, which gets
ignored in ParseProgram, which results in entire statements being
ignored because of an error in the input. Silently. You can probably
imagine that this makes debugging really tough. And since nobody
likes tough debugging we need to add error handling to our parser.

Thankfully, the changes we need to make are minimal:

// parser/parser.go

import (
// [...]
    "fmt"
)

type Parser struct {
// [...]
    errors []string
// [...]
}



The Parser now has an errors field, which is just a slice of strings.
This field gets initialized in New and the helper function peekError can
now be used to add an error to errors when the type of peekToken
doesn’t match the expectation. With the Errors method we can check
if the parser encountered any errors.

Extending the test suite to make use of this is as easy as you’d
expect:

func New(l *lexer.Lexer) *Parser {
    p := &Parser{
        l:      l,
        errors: []string{},
    }
// [...]
}

func (p *Parser) Errors() []string {
    return p.errors
}

func (p *Parser) peekError(t token.TokenType) {
    msg := fmt.Sprintf("expected next token to be %s, got %s instead",
        t, p.peekToken.Type)
    p.errors = append(p.errors, msg)
}

// parser/parser_test.go

func TestLetStatements(t *testing.T) {
// [...]

    program := p.ParseProgram()
    checkParserErrors(t, p)

// [...]
}

func checkParserErrors(t *testing.T, p *Parser) {
    errors := p.Errors()
    if len(errors) == 0 {
        return
    }



The new checkParserErrors helper function does nothing more than
check the parser for errors and if it has any it prints them as test
errors and stops the execution of the current test. Pretty
straightforward.

But nothing in our parser creates errors yet. By changing expectPeek
we can automatically add an error every time one of our expectations
about the next token was wrong:

If we now change our test case input from this

to this invalid input where tokens are missing

    t.Errorf("parser has %d errors", len(errors))
    for _, msg := range errors {
        t.Errorf("parser error: %q", msg)
    }
    t.FailNow()
}

// parser/parser.go

func (p *Parser) expectPeek(t token.TokenType) bool {
    if p.peekTokenIs(t) {
        p.nextToken()
        return true
    } else {
        p.peekError(t)
        return false
    }
}

    input := `
let x = 5;
let y = 10;
let foobar = 838383;
`

    input := `
let x 5;
let = 10;



we can run our tests to see our new parser errors:

As you can see, our parser showcases a neat little feature here: it
gives us errors for each erroneous statement it encounters. It doesn’t
exit on the first one, potentially saving us the grunt work of rerunning
the parsing process again and again to catch all of the syntax errors.
That’s pretty helpful - even with line and column numbers missing.

let 838383;
`

$ go test ./parser
--- FAIL: TestLetStatements (0.00s)
  parser_test.go:20: parser has 3 errors
  parser_test.go:22: parser error: "expected next token to be =,\
    got INT instead"
  parser_test.go:22: parser error: "expected next token to be IDENT,\
    got = instead"
  parser_test.go:22: parser error: "expected next token to be IDENT,\
    got INT instead"
FAIL
FAIL    monkey/parser   0.007s



2.5 - Parsing Return Statements
I said earlier that we’re going to flesh out our sparse looking
ParseProgram method. Now’s the time. We’re going to parse return
statements. And the first step, as with let statements before them, is
to define the necessary structures in the ast package with which we
can represent return statements in our AST.

Here is what return statements look like in Monkey:

Experienced with let statements, we can easily spot the structure
behind these statements:

Return statements consist solely of the keyword return and an
expression. That makes the definition of ast.ReturnStatement really
simple:

There is nothing about this node that you haven’t seen before: it has
a field for the initial token and a ReturnValue field that will contain the
expression that’s to be returned. We will again skip the parsing of the
expressions and the semicolon handling for now, but will come back
to this later. The statementNode and TokenLiteral methods are there

return 5;
return 10;
return add(15);

return <expression>;

// ast/ast.go

type ReturnStatement struct {
    Token       token.Token // the 'return' token
    ReturnValue Expression
}

func (rs *ReturnStatement) statementNode()       {}
func (rs *ReturnStatement) TokenLiteral() string { return rs.Token.Literal }



to fulfill the Node and Statement interfaces and look identical to the
methods defined on *ast.LetStatement.

The test we write next also looks pretty similar to the one for let
statements:

Of course these test cases will also have to be extended as soon as
expression parsing is in place. But that’s okay, tests are not
immutable. But they are, in fact, failing:

// parser/parser_test.go

func TestReturnStatements(t *testing.T) {
    input := `
return 5;
return 10;
return 993322;
`
    l := lexer.New(input)
    p := New(l)

    program := p.ParseProgram()
    checkParserErrors(t, p)

    if len(program.Statements) != 3 {
        t.Fatalf("program.Statements does not contain 3 statements. got=%d",
            len(program.Statements))
    }

    for _, stmt := range program.Statements {
        returnStmt, ok := stmt.(*ast.ReturnStatement)
        if !ok {
            t.Errorf("stmt not *ast.ReturnStatement. got=%T", stmt)
            continue
        }
        if returnStmt.TokenLiteral() != "return" {
            t.Errorf("returnStmt.TokenLiteral not 'return', got %q",
                returnStmt.TokenLiteral())
        }
    }
}



So let’s make them pass by changing our parseStatement method to
also take token.RETURN tokens into account:

I could make a lot of fuss about the parseReturnStatement method
before showing it to you, but, well, I won’t. Because it’s tiny. There is
nothing to fuss about.

$ go test ./parser
--- FAIL: TestReturnStatements (0.00s)
  parser_test.go:77: program.Statements does not contain 3 statements. got=0
FAIL
FAIL    monkey/parser   0.007s

// parser/parser.go

func (p *Parser) parseStatement() ast.Statement {
    switch p.curToken.Type {
    case token.LET:
        return p.parseLetStatement()
    case token.RETURN:
        return p.parseReturnStatement()
    default:
        return nil
    }
}

// parser/parser.go

func (p *Parser) parseReturnStatement() *ast.ReturnStatement {
    stmt := &ast.ReturnStatement{Token: p.curToken}

    p.nextToken()

    // TODO: We're skipping the expressions until we
    // encounter a semicolon
    for !p.curTokenIs(token.SEMICOLON) {
        p.nextToken()
    }

    return stmt
}



I told you: it’s tiny. The only thing it does is construct an
ast.ReturnStatement, with the current token it’s sitting on as Token. It
then brings the parser in place for the expression that comes next by
calling nextToken() and finally, there’s the cop-out. It skips over every
expression until it encounters a semicolon. That’s it. Our tests pass:

It’s time to celebrate again! We can now parse all of the statements in
the Monkey programming language! That’s right: there are only two
of them. Let statements and return statements. The rest of the
language consists solely of expressions. And that’s what we’re going
to parse next.

$ go test ./parser
ok      monkey/parser   0.009s



2.6 - Parsing Expressions
Personally, I think that parsing expressions is the most interesting
part of writing a parser. As we just saw, parsing statements is
relatively straightforward. We process tokens from “left to right”,
expect or reject the next tokens and if everything fits we return an
AST node.

Parsing expressions, on the other hand, contains a few more
challenges. Operator precedence is probably the first one that comes
to mind and is best illustrated with an example. Let’s say we want to
parse the following arithmetic expression:

What we want here is an AST that represents the expression like this:

That is to say, 5 * 5 needs to be “deeper” in the AST and evaluated
earlier than the addition. In order to produce an AST that looks like
this, the parser has to know about operator precedences where the
precedence of * is higher than +. That’s the most common example
for operator precedence, but there are a lot more cases where it’s
important. Consider this expression:

Here the parenthesis group together the 5 + 10 expression and give
them a “precedence bump”: the addition now has to be evaluated
before the multiplication. That’s because parentheses have a higher
precedence than the * operator. As we will soon see, there are a few
more cases where precedence is playing a crucial role.

The other big challenge is that in expressions tokens of the same
type can appear in multiple positions. In contrast to this, the let token

5 * 5 + 10

((5 * 5) + 10)

5 * (5 + 10)



can only appear once at the beginning of a let statement, which
makes it easy to determine what the rest of the statement is
supposed to be. Now look at this expression:

Here the - operator appears at the beginning of the expression, as a
prefix operator, and then as an infix operator in the middle. A variation
of the same challenge appears here:

Even though you might not recognize the parentheses as operators
yet, they pose the same problem to us as the - in the previous
example. The outer pair of parentheses in this example denotes a
grouped expression. The inner pair denotes a “call expression”. The
validity of a token’s position now depends on the context, the tokens
that come before and after, and their precedence.

Expressions in Monkey

In the Monkey programming language everything besides let and
return statements is an expression. These expressions come in
different varieties.

Monkey has expressions involving prefix operators:

And of course it has infix operators (or “binary operators”):

-5 - 10

5 * (add(2, 3) + 10)

-5
!true
!false

5 + 5
5 - 5
5 / 5
5 * 5



Besides these basic arithmetic operators, there are also the following
comparison operators:

And of course, as we previously saw, we can use parentheses to
group expressions and influence the order of evaluation:

Then there are call expressions:

Identifiers are expressions too:

Functions in Monkey are first-class citizens and, yes, function literals
are expressions too. We can use a let statement to bind a function to
a name. The function literal is just the expression in the statement:

And here we use a function literal in place of an identifier:

In contrast to a lot of widely used programming languages we also
have “if expressions” in Monkey:

foo == bar
foo != bar
foo < bar
foo > bar

5 * (5 + 5)
((5 + 5) * 5) * 5

add(2, 3)
add(add(2, 3), add(5, 10))
max(5, add(5, (5 * 5)))

foo * bar / foobar
add(foo, bar)

let add = fn(x, y) { return x + y };

fn(x, y) { return x + y }(5, 5)
(fn(x) { return x }(5) + 10 ) * 10

let result = if (10 > 5) { true } else { false };
result // => true



Looking at all these different forms of expressions it becomes clear
that we need a really good approach to parse them correctly and in
an understandable and extendable way. Our old approach of
deciding what to do based on the current token won’t get us very far -
at least not without wanting to tear our hair out. And that is where
Vaughan Pratt comes in.

Top Down Operator Precedence (or: Pratt Parsing)

In his paper “Top Down Operator Precedence” Vaughan Pratt
presents an approach to parsing expressions that, in his own words:

[…] is very simple to understand, trivial to implement, easy to
use, extremely efficient in practice if not in theory, yet flexible
enough to meet most reasonable syntactic needs of users […]

The paper was published in 1973 but in the many years since then the
ideas presented by Pratt didn’t gain a huge following. Only in recent
years, other programmers rediscovered Pratt’s paper, wrote about it
and caused Pratt’s approach to parsing to rise in popularity. There’s
Douglas Crockford’s (of “JavaScript: The Good Parts” fame) article
called “Top Down Operator Precedence” that shows how to translate
Pratt’s ideas to JavaScript (which Crockford did when building
JSLint). And then there’s the highly recommended article by Bob
Nystrom, author of the excellent “Game Programming Patterns” book,
that makes Pratt’s approach really easy to understand and to follow
by providing clean example code in Java.

The parsing approach described by all three, which is called Top
Down Operator Precedence Parsing, or Pratt parsing, was invented
as an alternative to parsers based on context-free grammars and the
Backus-Naur-Form.

And that is also the main difference: instead of associating parsing
functions (think of our parseLetStatement method here) with grammar
rules (defined in BNF or EBNF), Pratt associates these functions

http://javascript.crockford.com/tdop/tdop.html
http://journal.stuffwithstuff.com/2011/03/19/pratt-parsers-expression-parsing-made-easy/


(which he calls “semantic code”) with single token types. A crucial
part of this idea is that each token type can have two parsing
functions associated with it, depending on the token’s position - infix
or prefix.

I guess that doesn’t make a lot of sense yet. We never saw how to
associate parsing functions with grammar rules, so the idea of using
token types instead of these rules doesn’t register as anything really
novel or revelatory. To be completely honest: I was facing a chicken-
and-egg problem when writing this section. Is it better to explain this
algorithm in abstract terms and then show the implementation,
possibly causing you to jump back and forth between pages, or to
show the implementation with the explanation following, causing you
to probably skip over the implementation and not getting a lot out of
the explanation?

The answer, I decided, is neither of these two options. What we’re
going to do instead is start implementing the expression parsing part
of our parser. Then we’re going to take a closer look at it and its
algorithm. Afterwards we will extend and complete it so it’s able to
parse all possible expressions in Monkey.

And before we start writing any code, let’s just be clear on the
terminology.

Terminology

A prefix operator is an operator “in front of” its operand. Example:

Here the operator is -- (decrement), the operand is the integer literal
5 and the operator is in the prefix position.

A postfix operator is an operator “after” its operand. Example:

--5

foobar++



Here the operator is ++ (increment), the operand is the identifier
foobar and the operator is in the postfix position. The Monkey
interpreter we’ll build won’t have postfix operators. Not because of
some technical limitations, but purely in order to keep the scope of
the book limited.

Now, infix operators are something we’ve all seen before. An infix
operator sits between its operands, like this:

The * operator sits in the infix position between the two integer literals
5 and 8. Infix operators appear in binary expressions - where the
operator has two operands.

The other term we already stumbled upon and will find again later is
operator precedence. An alternative term for this is order of
operations, which should make clearer what operator precedence
describes: which priority do different operators have. The canonical
example is this one, which we saw earlier:

The result of this expression is 55 and not 100. And that’s because the
* operator has a higher precedence, a “higher rank”. It’s “more
important” than the + operator. It gets evaluated before the other
operator. I sometimes think of operator precedence as “operator
stickiness”: how much do the operands next to the operator “stick” to
it.

These are all basic terms: prefix, postfix, infix operator and
precedence. But it’s important that we keep these simple definitions
in mind later on, where we’ll use these terms in other places.

But for now: let’s get typing and write some code!

Preparing the AST

5 * 8

5 + 5 * 10



The first thing we need to do for expression parsing is to prepare our
AST. As we saw before, a program in Monkey is a series of
statements. Some are let statements, others return statements. We
need to add a third type of statement to our AST: expression
statements.

This may sound confusing, after I told you that let and return
statements are the only type of statements in Monkey. But an
expression statement is not really a distinct statement; it’s a
statement that consists solely of one expression. It’s only a wrapper.
We need it because it’s totally legal in Monkey to write the following
code:

The first line is a let statement, the second line is an expression
statement. Other languages don’t have these expression statements,
but most scripting languages do. They make it possible to have one
line consisting only of an expression. So let’s add this node type to
our AST:

The ast.ExpressionStatement type has two fields: the Token field,
which every node has, and the Expression field, which holds the
expression. ast.ExpressionStatement fulfills the ast.Statement
interface, which means we can add it to the Statements slice of
ast.Program. And that’s the whole reason why we’re adding
ast.ExpressionStatement.

let x = 5;
x + 10;

// ast/ast.go

type ExpressionStatement struct {
    Token      token.Token // the first token of the expression
    Expression Expression
}

func (es *ExpressionStatement) statementNode()       {}
func (es *ExpressionStatement) TokenLiteral() string { return es.Token.Literal }



With ast.ExpressionStatement defined we could resume work on the
parser. But instead, let’s make our lives much easier by adding a
String() method to our AST nodes. This will allow us to print AST
nodes for debugging and to compare them with other AST nodes.
This is going to be really handy in tests!

We’re going to make this String() method part of the ast.Node
interface:

Now every node type in our ast package has to implement this
method. With that change made, our code won’t compile because the
compiler complains about our AST nodes not fully implementing the
updated Node interface. Let’s start with *ast.Program and add its
String() method first:

This method doesn’t do much. It only creates a buffer and writes the
return value of each statement’s String() method to it. And then it

// ast/ast.go

type Node interface {
    TokenLiteral() string
    String() string
}

// ast/ast.go

import (
// [...]
    "bytes"
)

func (p *Program) String() string {
    var out bytes.Buffer

    for _, s := range p.Statements {
        out.WriteString(s.String())
    }

    return out.String()
}



returns the buffer as a string. It delegates most of its work to the
Statements of *ast.Program.

The “real work” happens in the String() methods of our three
statement types ast.LetStatement, ast.ReturnStatement and
ast.ExpressionStatement:

// ast/ast.go

func (ls *LetStatement) String() string {
    var out bytes.Buffer

    out.WriteString(ls.TokenLiteral() + " ")
    out.WriteString(ls.Name.String())
    out.WriteString(" = ")

    if ls.Value != nil {
        out.WriteString(ls.Value.String())
    }

    out.WriteString(";")

    return out.String()
}

func (rs *ReturnStatement) String() string {
    var out bytes.Buffer

    out.WriteString(rs.TokenLiteral() + " ")

    if rs.ReturnValue != nil {
        out.WriteString(rs.ReturnValue.String())
    }

    out.WriteString(";")

    return out.String()
}

func (es *ExpressionStatement) String() string {
    if es.Expression != nil {
        return es.Expression.String()
    }



The nil-checks will be taken out, later on, when we can fully build
expressions.

Now we only need to add a last String() method to ast.Identifier:

With these methods in place, we can now just call String() on
*ast.Program and get our whole program back as a string. That
makes the structure of *ast.Program easily testable. Let’s use the
following line of Monkey source code as an example:

If we construct an AST out of this, we can make an assertion about
the return value of String() like this:

    return ""
}

// ast/ast.go

func (i *Identifier) String() string { return i.Value }

let myVar = anotherVar;

// ast/ast_test.go

package ast

import (
    "monkey/token"
    "testing"
)

func TestString(t *testing.T) {
    program := &Program{
        Statements: []Statement{
            &LetStatement{
                Token: token.Token{Type: token.LET, Literal: "let"},
                Name: &Identifier{
                    Token: token.Token{Type: token.IDENT, Literal: "myVar"},
                    Value: "myVar",
                },
                Value: &Identifier{
                    Token: token.Token{Type: token.IDENT, Literal: "anotherVar"},



In this test we construct the AST by hand. When writing tests for the
parser we don’t, of course, but make assertions about the AST the
parser produces. For demonstration purposes, this test shows us
how we can add another easily readable layer of tests for our parser
by just comparing the parser output with strings. That’s going to be
especially handy when parsing expressions.

So, good news: preparation is done! It’s time to write a Pratt parser.

Implementing the Pratt Parser

A Pratt parser’s main idea is the association of parsing functions
(which Pratt calls “semantic code”) with token types. Whenever this
token type is encountered, the parsing functions are called to parse
the appropriate expression and return an AST node that represents it.
Each token type can have up to two parsing functions associated with
it, depending on whether the token is found in a prefix or an infix
position.

The first thing we need to do is to setup these associations. We
define two types of functions: a prefix parsing function and an infix
parsing function.

                    Value: "anotherVar",
                },
            },
        },
    }

    if program.String() != "let myVar = anotherVar;" {
        t.Errorf("program.String() wrong. got=%q", program.String())
    }
}

// parser/parser.go

type (
    prefixParseFn func() ast.Expression



Both function types return an ast.Expression, since that’s what we’re
here to parse. But only the infixParseFn takes an argument: another
ast.Expression. This argument is “left side” of the infix operator that’s
being parsed. A prefix operator doesn’t have a “left side”, per
definition. I know that this doesn’t make a lot of sense yet, but bear
with me here, you’ll see how this works. For now, just remember that
prefixParseFns gets called when we encounter the associated token
type in prefix position and infixParseFn gets called when we
encounter the token type in infix position.

In order for our parser to get the correct prefixParseFn or
infixParseFn for the current token type, we add two maps to the
Parser structure:

With these maps in place, we can just check if the appropriate map
(infix or prefix) has a parsing function associated with curToken.Type.

We also give the Parser two helper methods that add entries to these
maps:

    infixParseFn  func(ast.Expression) ast.Expression
)

// parser/parser.go

type Parser struct {
    l      *lexer.Lexer
    errors []string

    curToken  token.Token
    peekToken token.Token

    prefixParseFns map[token.TokenType]prefixParseFn
    infixParseFns  map[token.TokenType]infixParseFn
}

// parser/parser.go

func (p *Parser) registerPrefix(tokenType token.TokenType, fn prefixParseFn) {
    p.prefixParseFns[tokenType] = fn



Now we are ready to get to the heart of the algorithm.

Identifiers

We’re going to start with possibly the simplest expression type in the
Monkey programming language: identifiers. Used in an expression
statement an identifier looks like this:

Of course, the foobar is arbitrary and identifiers are expressions in
other contexts too, not just in an expression statement:

Here we have identifiers as arguments in a function call, as operands
in an infix expression and as a standalone expression as part of a
conditional. They can be used in all of these contexts, because
identifiers are expressions just like 1 + 2. And just like any other
expression identifiers produce a value: they evaluate to the value
they are bound to.

We start with a test:

}

func (p *Parser) registerInfix(tokenType token.TokenType, fn infixParseFn) {
    p.infixParseFns[tokenType] = fn
}

foobar;

add(foobar, barfoo);
foobar + barfoo;
if (foobar) {
  // [...]
}

// parser/parser_test.go

func TestIdentifierExpression(t *testing.T) {
    input := "foobar;"

    l := lexer.New(input)



That’s a lot of lines, but it’s mostly just grunt work. We parse our input
foobar;, check the parser for errors, make an assertion about the
number of statements in the *ast.Program node and then check that
the only statement in program.Statements is an
*ast.ExpressionStatement. Then we check that the
*ast.ExpressionStatement.Expression is an *ast.Identifier. Finally
we check that our identifier has the correct value of "foobar".

Of course, the parser tests fail:

    p := New(l)
    program := p.ParseProgram()
    checkParserErrors(t, p)

    if len(program.Statements) != 1 {
        t.Fatalf("program has not enough statements. got=%d",
            len(program.Statements))
    }
    stmt, ok := program.Statements[0].(*ast.ExpressionStatement)
    if !ok {
        t.Fatalf("program.Statements[0] is not ast.ExpressionStatement. got=%T",
            program.Statements[0])
    }

    ident, ok := stmt.Expression.(*ast.Identifier)
    if !ok {
        t.Fatalf("exp not *ast.Identifier. got=%T", stmt.Expression)
    }
    if ident.Value != "foobar" {
        t.Errorf("ident.Value not %s. got=%s", "foobar", ident.Value)
    }
    if ident.TokenLiteral() != "foobar" {
        t.Errorf("ident.TokenLiteral not %s. got=%s", "foobar",
            ident.TokenLiteral())
    }
}

$ go test ./parser
--- FAIL: TestIdentifierExpression (0.00s)
  parser_test.go:110: program has not enough statements. got=0
FAIL
FAIL    monkey/parser   0.007s



The parser doesn’t know anything about expressions yet. We need to
write a parseExpression method.

The first thing we need to do is to extend the parseStatement()
method of the parser, so that it parses expression statements. Since
the only two real statement types in Monkey are let and return
statements, we try to parse expression statements if we don’t
encounter one of the other two:

The parseExpressionStatement method looks like this:

We already know the drill: we build our AST node and then try to fill
its field by calling other parsing functions. In this case there are a few
differences though: we call parseExpression(), which doesn’t exist

// parser/parser.go

func (p *Parser) parseStatement() ast.Statement {
    switch p.curToken.Type {
    case token.LET:
        return p.parseLetStatement()
    case token.RETURN:
        return p.parseReturnStatement()
    default:
        return p.parseExpressionStatement()
    }
}

// parser/parser.go

func (p *Parser) parseExpressionStatement() *ast.ExpressionStatement {
    stmt := &ast.ExpressionStatement{Token: p.curToken}

    stmt.Expression = p.parseExpression(LOWEST)

    if p.peekTokenIs(token.SEMICOLON) {
        p.nextToken()
    }

    return stmt
}



yet, with the constant LOWEST, that doesn’t exist yet, and then we
check for an optional semicolon. Yes, it’s optional. If the peekToken is
a token.SEMICOLON, we advance so it’s the curToken. If it’s not there,
that’s okay too, we don’t add an error to the parser if it’s not there.
That’s because we want expression statements to have optional
semicolons (which makes it easier to type something like 5 + 5 into
the REPL later on).

If we now run the tests we can see that compilation fails, because
LOWEST is undefined. That’s alright, let’s add it now, by defining the
precedences of the Monkey programming language:

Here we use iota to give the following constants incrementing
numbers as values. The blank identifier _ takes the zero value and
the following constants get assigned the values 1 to 7. Which
numbers we use doesn’t matter, but the order and the relation to
each other do. What we want out of these constants is to later be able
to answer: “does the * operator have a higher precedence than the ==
operator? Does a prefix operator have a higher precedence than a
call expression?”

In parseExpressionStatement we pass the lowest possible
precedence to parseExpression, since we didn’t parse anything yet
and we can’t compare precedences. That’s going to make more
sense in a short while, I promise. Let’s write parseExpression:

// parser/parser.go

const (
    _ int = iota
    LOWEST
    EQUALS      // ==
    LESSGREATER // > or <
    SUM         // +
    PRODUCT     // *
    PREFIX      // -X or !X
    CALL        // myFunction(X)
)



That’s the first version. All it does is checking whether we have a
parsing function associated with p.curToken.Type in the prefix
position. If we do, it calls this parsing function, if not, it returns nil.
Which it does at the moment, since we haven’t associated any tokens
with any parsing functions yet. That’s our next step:

We modified the New() function to initialize the prefixParseFns map
on Parser and register a parsing function: if we encounter a token of
type token.IDENT the parsing function to call is parseIdentifier, a
method we defined on *Parser.

The parseIdentifier method doesn’t do a lot. It only returns a
*ast.Identifier with the current token in the Token field and the
literal value of the token in Value. It doesn’t advance the tokens, it

// parser/parser.go

func (p *Parser) parseExpression(precedence int) ast.Expression {
    prefix := p.prefixParseFns[p.curToken.Type]
    if prefix == nil {
        return nil
    }
    leftExp := prefix()

    return leftExp
}

// parser/parser.go

func New(l *lexer.Lexer) *Parser {
// [...]

    p.prefixParseFns = make(map[token.TokenType]prefixParseFn)
    p.registerPrefix(token.IDENT, p.parseIdentifier)

// [...]
}

func (p *Parser) parseIdentifier() ast.Expression {
    return &ast.Identifier{Token: p.curToken, Value: p.curToken.Literal}
}



doesn’t call nextToken. That’s important. All of our parsing functions,
prefixParseFn or infixParseFn, are going to follow this protocol: start
with curToken being the type of token you’re associated with and
return with curToken being the last token that’s part of your
expression type. Never advance the tokens too far.

Believe it or not, our tests pass:

We successfully parsed an identifier expression! Alright! But, before
we get off the computer, find someone and proudly tell them, let’s
keep our breath a little longer and write some more parsing functions.

Integer Literals

Nearly as easy to parse as identifiers are integer literals, which look
like this:

Yes, that’s it. Integer literals are expressions. The value they produce
is the integer itself. Again, imagine in which places integer literals can
occur to understand why they are expressions:

We can use any other expression instead of integer literals here and
it would still be valid: identifiers, call expressions, grouped
expressions, function literals and so on. All the expression types are
interchangeable and integer literals are one of them.

The test case for integer literals looks really similar to the one for
identifiers:

$ go test ./parser
ok      monkey/parser   0.007s

5;

let x = 5;
add(5, 10);
5 + 5 + 5;



And as in the test case for identifiers we use a simple input, feed it to
the parser and then check that the parser didn’t encounter any errors
and produced the correct number of statements in
*ast.Program.Statements. Then we add an assertion that the first
statement is an *ast.ExpressionStatement. And finally we expect a
well-formed *ast.IntegerLiteral.

The tests do not compile, since *ast.IntegerLiteral doesn’t exist
yet. Defining it is easy though:

// parser/parser_test.go

func TestIntegerLiteralExpression(t *testing.T) {
    input := "5;"

    l := lexer.New(input)
    p := New(l)
    program := p.ParseProgram()
    checkParserErrors(t, p)

    if len(program.Statements) != 1 {
        t.Fatalf("program has not enough statements. got=%d",
            len(program.Statements))
    }
    stmt, ok := program.Statements[0].(*ast.ExpressionStatement)
    if !ok {
        t.Fatalf("program.Statements[0] is not ast.ExpressionStatement. got=%T",
            program.Statements[0])
    }

    literal, ok := stmt.Expression.(*ast.IntegerLiteral)
    if !ok {
        t.Fatalf("exp not *ast.IntegerLiteral. got=%T", stmt.Expression)
    }
    if literal.Value != 5 {
        t.Errorf("literal.Value not %d. got=%d", 5, literal.Value)
    }
    if literal.TokenLiteral() != "5" {
        t.Errorf("literal.TokenLiteral not %s. got=%s", "5",
            literal.TokenLiteral())
    }
}



*ast.IntegerLiteral fulfills the ast.Expression interface, just like
*ast.Identifier does, but there’s a notable difference to
ast.Identifier in the structure itself: Value is an int64 and not a
string. This is the field that’s going to contain the actual value the
integer literal represents in the source code. When we build an
*ast.IntegerLiteral we have to convert the string in
*ast.IntegerLiteral.Token.Literal (which is something like "5") to
an int64.

The best place to do this is in the parsing function associated with
token.INT, called parseIntegerLiteral:

// ast/ast.go

type IntegerLiteral struct {
    Token token.Token
    Value int64
}

func (il *IntegerLiteral) expressionNode()      {}
func (il *IntegerLiteral) TokenLiteral() string { return il.Token.Literal }
func (il *IntegerLiteral) String() string       { return il.Token.Literal }

// parser/parser.go

import (
// [...]
    "strconv"
)

func (p *Parser) parseIntegerLiteral() ast.Expression {
    lit := &ast.IntegerLiteral{Token: p.curToken}

    value, err := strconv.ParseInt(p.curToken.Literal, 0, 64)
    if err != nil {
        msg := fmt.Sprintf("could not parse %q as integer", p.curToken.Literal)
        p.errors = append(p.errors, msg)
        return nil
    }

    lit.Value = value



Like parseIdentifier the method is strikingly simple. The only thing
that’s really different is a call to strconv.ParseInt, which converts the
string in p.curToken.Literal into an int64. The int64 then gets saved
to the Value field and we return the newly constructed
*ast.IntegerLiteral node. If that doesn’t work, we add a new error to
the parser’s errors field.

But the tests don’t pass yet:

We have a nil instead of an *ast.IntegerLiteral in our AST. The
reason is that parseExpression can’t find a prefixParseFn for a token
of type token.INT. All we have to do to make the tests pass is to
register our parseIntegerLiteral method:

With parseIntegerLiteral registered, parseExpression now knows
what to do with a token.INT token, calls parseIntegerLiteral and
returns its return value, an *ast.IntegerLiteral. The tests pass:

    return lit
}

$ go test ./parser
--- FAIL: TestIntegerLiteralExpression (0.00s)
  parser_test.go:162: exp not *ast.IntegerLiteral. got=<nil>
FAIL
FAIL    monkey/parser   0.008s

// parser/parser.go

func New(l *lexer.Lexer) *Parser {
// [...]
    p.prefixParseFns = make(map[token.TokenType]prefixParseFn)
    p.registerPrefix(token.IDENT, p.parseIdentifier)
    p.registerPrefix(token.INT, p.parseIntegerLiteral)

// [...]
}

$ go test ./parser
ok      monkey/parser   0.007s



I think it’s time to say: we are on a roll here! Identifiers and integer
literals are in the bag, let’s step it up a notch and parse prefix
operators.

Prefix Operators

There are two prefix operators in the Monkey programming language:
! and -. Their usage is pretty much what you’d expect from other
languages:

The structure of their usage is the following:

Yes, that’s right. Any expression can follow a prefix operator as
operand. These are valid:

That means that an AST node for a prefix operator expression has to
be flexible enough to point to any expression as its operand.

But first things first, here is the test case for prefix operators, or “prefix
expressions”:

-5;
!foobar;
5 + -10;

<prefix operator><expression>;

!isGreaterThanZero(2);
5 + -add(5, 5);

// parser/parser_test.go

func TestParsingPrefixExpressions(t *testing.T) {
    prefixTests := []struct {
        input        string
        operator     string
        integerValue int64
    }{
        {"!5;", "!", 5},
        {"-15;", "-", 15},



This test function, again, has a lot of lines. For two reasons: manually
creating error messages with t.Errorf takes up some space and
we’re using a table-driven testing approach. The reason for this
approach is that it saves us a lot of test code. Yes, it’s only two test
cases, but duplicating the complete test setup for each case would
mean a lot more lines. And since the logic behind the test assertions
is the same, we share the test setup. Both test cases (!5 and -15 as
input) differ only in the expected operators and integer values (which
we define here in prefixTests).

    }

    for _, tt := range prefixTests {
        l := lexer.New(tt.input)
        p := New(l)
        program := p.ParseProgram()
        checkParserErrors(t, p)

        if len(program.Statements) != 1 {
            t.Fatalf("program.Statements does not contain %d statements. got=%d\n",
                1, len(program.Statements))
        }

        stmt, ok := program.Statements[0].(*ast.ExpressionStatement)
        if !ok {
            t.Fatalf("program.Statements[0] is not ast.ExpressionStatement. got=%T",
                program.Statements[0])
        }

        exp, ok := stmt.Expression.(*ast.PrefixExpression)
        if !ok {
            t.Fatalf("stmt is not ast.PrefixExpression. got=%T", stmt.Expression)
        }
        if exp.Operator != tt.operator {
            t.Fatalf("exp.Operator is not '%s'. got=%s",
                tt.operator, exp.Operator)
        }
        if !testIntegerLiteral(t, exp.Right, tt.integerValue) {
            return
        }
    }
}



In the test function we iterate through our slice of test inputs and
make assertions about the produced AST based on the values
defined in the prefixTests slice of structs. As you can see, at the end
we use a new helper function called testIntegerLiteral to test that
the Right value of *ast.PrefixExpression is the correct integer literal.
We introduce this helper function here, so the focus of the test case is
on *ast.PrefixExpression and its fields and we will soon enough
need it again. It looks like this:

There is nothing new here, we’ve seen this before in
TestIntegerLiteralExpression. But now it’s hidden behind a small
helper function that makes these new tests more readable.

// parser/parser_test.go

import (
// [...]
    "fmt"
)

func testIntegerLiteral(t *testing.T, il ast.Expression, value int64) bool {
    integ, ok := il.(*ast.IntegerLiteral)
    if !ok {
        t.Errorf("il not *ast.IntegerLiteral. got=%T", il)
        return false
    }

    if integ.Value != value {
        t.Errorf("integ.Value not %d. got=%d", value, integ.Value)
        return false
    }

    if integ.TokenLiteral() != fmt.Sprintf("%d", value) {
        t.Errorf("integ.TokenLiteral not %d. got=%s", value,
            integ.TokenLiteral())
        return false
    }

    return true
}



As expected the tests don’t even compile:

We need to define the ast.PrefixExpression node:

This doesn’t contain any surprises. The *ast.PrefixExpression node
has two noteworthy fields: Operator and Right. Operator is a string
that’s going to contain either "-" or "!". The Right field contains the
expression to the right of the operator.

In the String() method we deliberately add parentheses around the
operator and its operand, the expression in Right. That allows us to
see which operands belong to which operator.

With *ast.PrefixExpression defined, the tests now fail with a strange
error message:

$ go test ./parser
# monkey/parser
parser/parser_test.go:210: undefined: ast.PrefixExpression
FAIL    monkey/parser [build failed]

// ast/ast.go

type PrefixExpression struct {
    Token    token.Token // The prefix token, e.g. !
    Operator string
    Right    Expression
}

func (pe *PrefixExpression) expressionNode()      {}
func (pe *PrefixExpression) TokenLiteral() string { return pe.Token.Literal }
func (pe *PrefixExpression) String() string {
    var out bytes.Buffer

    out.WriteString("(")
    out.WriteString(pe.Operator)
    out.WriteString(pe.Right.String())
    out.WriteString(")")

    return out.String()
}



Why does program.Statements contain two statements instead of the
expected one statement? The reason is that parseExpression doesn’t
recognize our prefix operators yet and simply returns nil.
program.Statements does not contain one statement but simply two
nils.

We can do better than this, we can extend our parser and the
parseExpression method to give us better error messages when this
happens:

The small helper method noPrefixParseFnError just adds a formatted
error message to our parser’s errors field. But that’s enough to get
better error messages in our failing test:

$ go test ./parser
--- FAIL: TestParsingPrefixExpressions (0.00s)
  parser_test.go:198: program.Statements does not contain 1 statements. got=2
FAIL
FAIL    monkey/parser   0.007s

// parser/parser.go

func (p *Parser) noPrefixParseFnError(t token.TokenType) {
    msg := fmt.Sprintf("no prefix parse function for %s found", t)
    p.errors = append(p.errors, msg)
}

func (p *Parser) parseExpression(precedence int) ast.Expression {
    prefix := p.prefixParseFns[p.curToken.Type]
    if prefix == nil {
        p.noPrefixParseFnError(p.curToken.Type)
        return nil
    }
    leftExp := prefix()

    return leftExp
}

$ go test ./parser
--- FAIL: TestParsingPrefixExpressions (0.00s)
  parser_test.go:227: parser has 1 errors
  parser_test.go:229: parser error: "no prefix parse function for ! found"



Now it’s clear what we have to do: write a parsing function for prefix
expressions and register it in our parser.

For token.BANG and token.MINUS we register the same method as
prefixParseFn: the newly created parsePrefixExpression. This
method builds an AST node, in this case *ast.PrefixExpression, just
like the parsing functions we saw before. But then it does something
different: it actually advances our tokens by calling p.nextToken()!

When parsePrefixExpression is called, p.curToken is either of type
token.BANG or token.MINUS, because otherwise it wouldn’t have been
called. But in order to correctly parse a prefix expression like -5 more
than one token has to be “consumed”. So after using p.curToken to
build a *ast.PrefixExpression node, the method advances the
tokens and calls parseExpression again. This time with the

FAIL
FAIL    monkey/parser   0.010s

// parser/parser.go

func New(l *lexer.Lexer) *Parser {
// [...]
    p.registerPrefix(token.BANG, p.parsePrefixExpression)
    p.registerPrefix(token.MINUS, p.parsePrefixExpression)
// [...]
}

func (p *Parser) parsePrefixExpression() ast.Expression {
    expression := &ast.PrefixExpression{
        Token:    p.curToken,
        Operator: p.curToken.Literal,
    }

    p.nextToken()

    expression.Right = p.parseExpression(PREFIX)

    return expression
}



precedence of prefix operators as argument. It’s still unused, but we’ll
shortly see what it’s good for and how to make use of it.

Now, when parseExpression is called by parsePrefixExpression the
tokens have been advanced and the current token is the one after the
prefix operator. In the case of -5, when parseExpression is called the
p.curToken.Type is token.INT. parseExpression then checks the
registered prefix parsing functions and finds parseIntegerLiteral,
which builds an *ast.IntegerLiteral node and returns it.
parseExpression returns this newly constructed node and
parsePrefixExpression uses it to fill the Right field of
*ast.PrefixExpression.

Yes, this works, our tests pass:

Note how the “protocol” for our parsing functions plays out here:

parsePrefixExpression starts with p.curToken being the token of the
prefix operator and it returns with p.curToken being the operand of the
prefix expression, which is the last token of the expression. The
tokens get advanced just enough, which works beautifully. The neat
thing is how few lines of code are needed for this. The power lies in
the recursive approach.

Granted, the precedence argument in parseExpression is confusing,
since it’s unused. But we’ve already seen something important about
its usage: the value changes depending on the caller’s knowledge
and its context. parseExpressionStatement (the top-level method that
kicks off expression parsing here) knows nothing about a precedence
level and just uses LOWEST. But parsePrefixExpression passes the
PREFIX precedence to parseExpression, since it’s parsing a prefix
expression.

$ go test ./parser
ok      monkey/parser   0.007s



And now we’ll see how precedence in parseExpression is used.
Because now we’re going to parse infix expressions.

Infix Operators

Next up we’re going to parse these eight infix operators:

Don’t be bothered by the 5 here. As with prefix operator expressions,
we can use any expressions to the left and right of the operator.

Because of the two operands (left and right) these expressions are
sometimes called “binary expressions” (whereas our prefix
expressions would be called “unary expressions”). Even though we
can use any expressions on either side of the operator, we’re going to
start by writing a test that only uses integer literals as operands. As
soon as we can get the test to pass, we’ll extend it to incorporate
more operand types. Here it is:

5 + 5;
5 - 5;
5 * 5;
5 / 5;
5 > 5;
5 < 5;
5 == 5;
5 != 5;

<expression> <infix operator> <expression>

// parser/parser_test.go

func TestParsingInfixExpressions(t *testing.T) {
    infixTests := []struct {
        input      string
        leftValue  int64
        operator   string
        rightValue int64
    }{
        {"5 + 5;", 5, "+", 5},
        {"5 - 5;", 5, "-", 5},
        {"5 * 5;", 5, "*", 5},



        {"5 / 5;", 5, "/", 5},
        {"5 > 5;", 5, ">", 5},
        {"5 < 5;", 5, "<", 5},
        {"5 == 5;", 5, "==", 5},
        {"5 != 5;", 5, "!=", 5},
    }

    for _, tt := range infixTests {
        l := lexer.New(tt.input)
        p := New(l)
        program := p.ParseProgram()
        checkParserErrors(t, p)

        if len(program.Statements) != 1 {
            t.Fatalf("program.Statements does not contain %d statements. got=%d\n",
                1, len(program.Statements))
        }

        stmt, ok := program.Statements[0].(*ast.ExpressionStatement)
        if !ok {
            t.Fatalf("program.Statements[0] is not ast.ExpressionStatement. got=%T",
                program.Statements[0])
        }

        exp, ok := stmt.Expression.(*ast.InfixExpression)
        if !ok {
            t.Fatalf("exp is not ast.InfixExpression. got=%T", stmt.Expression)
        }

        if !testIntegerLiteral(t, exp.Left, tt.leftValue) {
            return
        }

        if exp.Operator != tt.operator {
            t.Fatalf("exp.Operator is not '%s'. got=%s",
                tt.operator, exp.Operator)
        }

        if !testIntegerLiteral(t, exp.Right, tt.rightValue) {
            return
        }
    }
}



This test is nearly a straight copy of TestParsingPrefixExpressions,
except that we now make assertions about the Right and Left fields
of the resulting AST node. Here the table-driven approach gives us
great leverage that we’ll soon use when we extend the test to also
include identifiers.

The tests fail, of course, because they can’t find a definition of
*ast.InfixExpression. And in order to get real failing tests, we define
ast.InfixExpression:

Just like with ast.PrefixExpression, we define ast.InfixExpression
to fulfill the ast.Expression and ast.Node interfaces, by defining the
expressionNode(), TokenLiteral() and String() methods. The only
difference to ast.PrefixExpression is the new field called Left, which
can hold any expression.

With that out of the way, we can build and run our tests. And the tests
even return one of our own new error messages:

// ast/ast.go

type InfixExpression struct {
    Token    token.Token // The operator token, e.g. +
    Left     Expression
    Operator string
    Right    Expression
}

func (ie *InfixExpression) expressionNode()      {}
func (ie *InfixExpression) TokenLiteral() string { return ie.Token.Literal }
func (ie *InfixExpression) String() string {
    var out bytes.Buffer

    out.WriteString("(")
    out.WriteString(ie.Left.String())
    out.WriteString(" " + ie.Operator + " ")
    out.WriteString(ie.Right.String())
    out.WriteString(")")

    return out.String()
}



But that error message is deceiving. It says “no prefix parse function
for + found”. The problem is that we do not want our parser to find a
prefix parse function for +. We want it to find an infix parse function.

This is the point where we’re going from “I guess it’s neat” to “Wow,
this is beautiful”, because we now need to complete our
parseExpression method. And to do that, we first need a precedence
table and a few helper methods:

$ go test ./parser
--- FAIL: TestParsingInfixExpressions (0.00s)
  parser_test.go:246: parser has 1 errors
  parser_test.go:248: parser error: "no prefix parse function for + found"
FAIL
FAIL    monkey/parser   0.007s

// parser/parser.go

var precedences = map[token.TokenType]int{
    token.EQ:       EQUALS,
    token.NOT_EQ:   EQUALS,
    token.LT:       LESSGREATER,
    token.GT:       LESSGREATER,
    token.PLUS:     SUM,
    token.MINUS:    SUM,
    token.SLASH:    PRODUCT,
    token.ASTERISK: PRODUCT,
}

// [...]

func (p *Parser) peekPrecedence() int {
    if p, ok := precedences[p.peekToken.Type]; ok {
        return p
    }

    return LOWEST
}

func (p *Parser) curPrecedence() int {
    if p, ok := precedences[p.curToken.Type]; ok {
        return p
    }



precedences is our precedence table: it associates token types with
their precedence. The precedence values themselves are the
constants we defined earlier, the integers with increasing value. This
table can now tell us that + (token.PLUS) and - (token.MINUS) have the
same precedence, which is lower than the precedence of *
(token.ASTERISK) and / (token.SLASH), for example.

The peekPrecedence method returns the precedence associated with
the token type of p.peekToken. If it doesn’t find a precedence for
p.peekToken it defaults to LOWEST, the lowest possible precedence any
operator can have. The curPrecedence method does the same thing,
but for p.curToken.

The next step is to register one infix parse function for all of our infix
operators:

We already have the registerInfix method in our repertoire and now
we finally use it. Every infix operator gets associated with the same
parsing function called parseInfixExpression, which looks like this:

    return LOWEST
}

// parser/parser.go

func New(l *lexer.Lexer) *Parser {
// [...]
    p.infixParseFns = make(map[token.TokenType]infixParseFn)
    p.registerInfix(token.PLUS, p.parseInfixExpression)
    p.registerInfix(token.MINUS, p.parseInfixExpression)
    p.registerInfix(token.SLASH, p.parseInfixExpression)
    p.registerInfix(token.ASTERISK, p.parseInfixExpression)
    p.registerInfix(token.EQ, p.parseInfixExpression)
    p.registerInfix(token.NOT_EQ, p.parseInfixExpression)
    p.registerInfix(token.LT, p.parseInfixExpression)
    p.registerInfix(token.GT, p.parseInfixExpression)
// [...]
}



The notable difference here is that, in contrast to
parsePrefixExpression, this new method takes an argument, an
ast.Expression called left. It uses this argument to construct an
*ast.InfixExpression node, with left being in the Left field. Then it
assigns the precedence of the current token (which is the operator of
the infix expression) to the local variable precedence, before
advancing the tokens by calling nextToken and filling the Right field of
the node with another call to parseExpression - this time passing in
the precedence of the operator token.

It’s time to lift the curtain. Here is the heart of our Pratt parser, here is
the final version of parseExpression:

// parser/parser.go

func (p *Parser) parseInfixExpression(left ast.Expression) ast.Expression {
    expression := &ast.InfixExpression{
        Token:    p.curToken,
        Operator: p.curToken.Literal,
        Left:     left,
    }

    precedence := p.curPrecedence()
    p.nextToken()
    expression.Right = p.parseExpression(precedence)

    return expression
}

// parser/parser.go

func (p *Parser) parseExpression(precedence int) ast.Expression {
    prefix := p.prefixParseFns[p.curToken.Type]
    if prefix == nil {
        p.noPrefixParseFnError(p.curToken.Type)
        return nil
    }
    leftExp := prefix()

    for !p.peekTokenIs(token.SEMICOLON) && precedence < p.peekPrecedence() {
        infix := p.infixParseFns[p.peekToken.Type]
        if infix == nil {



And, boom! Our tests pass! It’s all green, baby:

We are now officially able to parse infix operator expressions
correctly! Wait, what? What the hell did just happen? How does this
work?

Obviously parseExpression now does a few more things. We already
know how it finds an associated prefixParseFn with the current token
and calls it. We’ve seen this work with prefix operators, identifiers and
integer literals.

What’s new is the loop right in the middle of parseExpression. In the
loop’s body the method tries to find infixParseFns for the next token.
If it finds such a function, it calls it, passing in the expression returned
by a prefixParseFn as an argument. And it does all this again and
again until it encounters a token that has a lower precedence.

This works beautifully. Look at these tests that use multiple operators
with different precedences and how the AST in string form correctly
represents this:

            return leftExp
        }

        p.nextToken()

        leftExp = infix(leftExp)
    }

    return leftExp
}

$ go test ./parser
ok      monkey/parser   0.006s

// parser/parser_test.go

func TestOperatorPrecedenceParsing(t *testing.T) {
    tests := []struct {
        input    string



        expected string
    }{
        {
            "-a * b",
            "((-a) * b)",
        },
        {
            "!-a",
            "(!(-a))",
        },
        {
            "a + b + c",
            "((a + b) + c)",
        },
        {
            "a + b - c",
            "((a + b) - c)",
        },
        {
            "a * b * c",
            "((a * b) * c)",
        },
        {
            "a * b / c",
            "((a * b) / c)",
        },
        {
            "a + b / c",
            "(a + (b / c))",
        },
        {
            "a + b * c + d / e - f",
            "(((a + (b * c)) + (d / e)) - f)",
        },
        {
            "3 + 4; -5 * 5",
            "(3 + 4)((-5) * 5)",
        },
        {
            "5 > 4 == 3 < 4",
            "((5 > 4) == (3 < 4))",
        },
        {
            "5 < 4 != 3 > 4",
            "((5 < 4) != (3 > 4))",



They’re all passing! That’s pretty amazing, isn’t it?

The different *ast.InfixExpressions are nested correctly, which we
can observe thanks to our usage of parentheses in the String()
methods of the AST nodes.

If you’re scratching your head and wondering how all of this works,
don’t worry. We’re now going to take a really close look at our
parseExpression method.

        },
        {
            "3 + 4 * 5 == 3 * 1 + 4 * 5",
            "((3 + (4 * 5)) == ((3 * 1) + (4 * 5)))",
        },
    }

    for _, tt := range tests {
        l := lexer.New(tt.input)
        p := New(l)
        program := p.ParseProgram()
        checkParserErrors(t, p)

        actual := program.String()
        if actual != tt.expected {
            t.Errorf("expected=%q, got=%q", tt.expected, actual)
        }
    }
}



2.7 - How Pratt Parsing Works
The algorithm behind the parseExpression method and its
combination of parsing functions and precedences is fully described
by Vaughan Pratt in his “Top Down Operator Precedence” paper. But
there are differences between his and our implementation.

Pratt doesn’t use a Parser structure and doesn’t pass around
methods defined on *Parser. He also doesn’t use maps and, of
course, he didn’t use Go. His paper predates the release of Go by 36
years. And then there are naming differences: what we call
prefixParseFns are “nuds” (for “null denotations”) for Pratt.
infixParseFns are “leds” (for “left denotations”).

Formulated in pseudocode though, our parseExpression method
looks strikingly similar to the code presented in Pratt’s paper. It uses
the same algorithm with barely any changes.

We’re going to skip the theory that answers why it works and just
follow how it works and how all the pieces (parseExpression, parsing
functions and precedences) fit together by looking at an example.
Suppose we’re parsing the following expression statement:

The big challenge here is not to represent every operator and
operand in the resulting AST, but to nest the nodes of the AST
correctly. What we want is an AST that (serialized as a string) looks
like this:

The AST needs to have two *ast.InfixExpression nodes. The
*ast.InfixExpression higher in the tree should have the integer literal
3 as its Right child node and its Left child node needs to be the other
*ast.InfixExpression. This second *ast.InfixExpression then

1 + 2 + 3;

((1 + 2) + 3)



needs to have the integer literals 1 and 2 as its Left and Right child
nodes, respectively. Like this:

 

And this is exactly what our parser outputs when it parses 1 + 2 +
3;. But how? We’ll answer that question in the following paragraphs.
We’re going take a close look at what the parser does as soon as
parseExpressionStatement is called for the first time. It’s not a mistake
to have the code open while reading the following paragraphs.

So here we go. Here is what happens when we parse 1 + 2 + 3;:

parseExpressionStatement calls parseExpression(LOWEST). The
p.curToken and p.peekToken are the 1 and the first +:

 

The first thing parseExpression then does is to check whether there is
a prefixParseFn associated with the current p.curToken.Type, which



is a token.INT. And, yes, there is: parseIntegerLiteral. So it calls
parseIntegerLiteral, which returns an *ast.IntegerLiteral.
parseExpression assigns this to leftExp.

Then comes the new for-loop in parseExpression. Its condition
evaluates to true:

p.peekToken is not a token.SEMICOLON and peekPrecedence (which
returns the precedence of the + token) is higher than the argument
passed to parseExpression, which is LOWEST. Here are our defined
precedences again to refresh our memory:

So the condition evaluates to true and parseExpression executes the
body of the loop, which looks like this:

for !p.peekTokenIs(token.SEMICOLON) && precedence < p.peekPrecedence() {
// [...]
}

// parser/parser.go

const (
    _ int = iota
    LOWEST
    EQUALS      // ==
    LESSGREATER // > or <
    SUM         // +
    PRODUCT     // *
    PREFIX      // -X or !X
    CALL        // myFunction(X)
)

infix := p.infixParseFns[p.peekToken.Type]
if infix == nil {
  return leftExp
}

p.nextToken()

leftExp = infix(leftExp)



Now it fetches the infixParseFn for p.peekToken.Type, which is
parseInfixExpression defined on *Parser. Before calling it and
assigning its return value to leftExp (reusing the leftExp variable!) it
advances the tokens so they now look like this:

 

With the tokens in this state, it calls parseInfixExpression and
passes in the already parsed *ast.IntegerLiteral (assigned to
leftExp outside the for-loop). What happens next in
parseInfixExpression is where things get interesting. Here is the
method again:

It’s important to note that left is our already parsed
*ast.IntegerLiteral that represents the 1.

parseInfixExpression saves the precedence of p.curToken (the first +
token!), advances the tokens and calls parseExpression - passing in

// parser/parser.go

func (p *Parser) parseInfixExpression(left ast.Expression) ast.Expression {
    expression := &ast.InfixExpression{
        Token:    p.curToken,
        Operator: p.curToken.Literal,
        Left:     left,
    }

    precedence := p.curPrecedence()
    p.nextToken()
    expression.Right = p.parseExpression(precedence)

    return expression
}



the just saved precedence. So now parseExpression is called the
second time, with the tokens looking like this:

 

The first thing parseExpression does again is to look for a
prefixParseFn for p.curToken. And again it’s parseIntegerLiteral.
But now the condition of the for-loop doesn’t evaluate to true:
precedence (the argument passed to parseExpression) is the
precedence of the first + operator in 1 + 2 + 3, which is not smaller
than the precedence of p.peekToken, the second + operator. They are
equal. The body of the for-loop is not executed and the
*ast.IntegerLiteral representing the 2 is returned.

Now back in parseInfixExpression the return-value of
parseExpression is assigned to the Right field of the newly
constructed *ast.InfixExpression. So now we have this:

 



This *ast.InfixExpression gets returned by parseInfixExpression
and now we’re back in the outer-most call to parseExpression, where
precedence is still LOWEST. We are back where we started and the
condition of the for-loop is evaluated again.

This still evaluates to true, since precedence is LOWEST and
peekPrecedence now returns the precedence of the second + in our
expression, which is higher. parseExpression executes the body of
the for-loop a second time. The difference is that now leftExp is not
an *ast.IntegerLiteral representing the 1, but the
*ast.InfixExpression returned by parseInfixExpression,
representing 1 + 2.

In the body of the loop parseExpression fetches
parseInfixExpression as the infixParseFn for p.peekToken.Type
(which is the second +), advances the tokens and calls
parseInfixExpression with leftExp as the argument.
parseInfixExpression in turn calls parseExpression again, which
returns the last *ast.IntegerLiteral (that represents the 3 in our
expression).

After all this, at the end of the loop-body, leftExp looks like this:

for !p.peekTokenIs(token.SEMICOLON) && precedence < p.peekPrecedence() {
// [...]
}



 

That’s exactly what we wanted! The operators and operands are
nested correctly! And our tokens look like this:

 

The condition of the for-loop evaluates to false:

Now p.peekTokenIs(token.SEMICOLON) evaluates to true, which stops
the body of the loop from being executed again.

(The call to p.peekTokenIs(token.SEMICOLON) is not strictly necessary.
Our peekPrecedence method returns LOWEST as the default value if no
precedence for p.peekToken.Type can be found - which is the case for
token.SEMICOLON tokens. But I think it makes the behaviour of

for !p.peekTokenIs(token.SEMICOLON) && precedence < p.peekPrecedence() {
// [...]
}



semicolons as expression-ending-delimiters more explicit and easier
to understand.)

And that’s it! The for-loop is done and leftExp is returned. We’re back
in parseExpressionStatement and have the final and correct
*ast.InfixExpression at hand. And that’s used as the Expression in
*ast.ExpressionStatement.

Now we know how our parser manages to parse 1 + 2 + 3 correctly.
It’s pretty fascinating, isn’t it? I think the usage of precedence and
peekPrecedence is particularly interesting.

But what about “real precedence issues”? In our example every
operator (the +) had the same precedence. What do the different
precedence levels for operators accomplish? Couldn’t we just use
LOWEST per default and something called HIGHEST for all operators?

No, because that would give us a wrong AST. The goal is to have
expressions involving operators with a higher precedence to be
deeper in the tree than expressions with lower precedence operators.
This is accomplished by the precedence value (the argument) in
parseExpression.

When parseExpression is called the value of precedence stands for
the current “right-binding power” of the current parseExpression
invocation. What does “right-binding power” mean? Well, the higher it
is, the more tokens/operators/operands to the right of the current
expressions (the future peek tokens) can we “bind” to it, or as I like to
think, “suck in”.

In case our current right-binding power is of the highest possible
value, what we parsed so far (assigned to leftExp) is never passed to
an infixParseFn associated with the next operator (or token). It will
never end up as a “left” child node. Because the condition of the for-
loop never evaluates to true.



A counterpart to right-binding power exists and it’s called (you
guessed it!) “left-binding power”. But which value signifies this left-
binding power? Since the precedence argument in parseExpression
stands for the current right-binding power, where does the left-binding
power of the next operator come from? Simply put: from our call to
peekPrecedence. The value this call returns stands for the left-binding
power of the next operator, of p.peekToken.

It all comes down to the precedence < p.peekPrecedence() condition
of our for-loop. This condition checks if the left-binding power of the
next operator/token is higher than our current right-binding power. If it
is, what we parsed so far gets “sucked in” by the next operator, from
left to right, and ends up being passed to the infixParseFn of the next
operator.

An example: let’s say we’re parsing the expression statement -1 +
2;. What we want the AST to represent is (-1) + 2 and not -(1 + 2).
The first method we end up in (after parseExpressionStatement and
parseExpression) is the prefixParseFn we associated with
token.MINUS: parsePrefixExpression. To refresh our memory of
parsePrefixExpression here it is in its entirety:

This passes PREFIX to parseExpression as precedence, turning PREFIX
into the right-binding power of that parseExpression invocation.
PREFIX is a really high precedence, as per our definition. The result of
this is that parseExpression(PREFIX) is never going to parse the 1 in

// parser/parser.go

func (p *Parser) parsePrefixExpression() ast.Expression {
  expression := &ast.PrefixExpression{
    Token:    p.curToken,
    Operator: p.curToken.Literal,
  }
  p.nextToken()
  expression.Right = p.parseExpression(PREFIX)
  return expression
}



-1 and pass it to another infixParseFn. The precedence <
p.peekPrecedence() will never be true in this case, meaning that no
other infixParseFn is going to get our 1 as the left arm. Instead the 1
is returned as the “right” arm of our prefix expression. Just the 1, not
some other expression that comes after and needs to be parsed.

Back in the outer call to parseExpression (in which we called
parsePrefixExpression as a prefixParseFn), right after the first
leftExp := prefix(), the value of precedence is still LOWEST. Since
that was the value we used in the outer-most call. Our right-binding
power is still LOWEST. The p.peekToken is now the + in -1 + 2.

We’re now sitting on the condition of the for-loop and evaluate it to
determine whether we should execute the body of the loop. And it
turns out that the precedence of the + operator (returned by
p.peekPrecedence()) is higher than our current right-binding power.
What we parsed so far (the -1 prefix expression) is now passed to the
infixParseFn associated with +. The left-binding power of the + “sucks
in” what we parsed so far and uses it as the “left arm” of the AST
node it is constructing.

The infixParseFn for + is parseInfixExpression, which now uses the
precedence of + as the right-binding power in its call to
parseExpression. It doesn’t use LOWEST, because that would result in
another + having a higher left-binding power and “sucking” away our
“right arm”. If it did, then an expression like a + b + c would result in
(a + (b + c)), which is not what we want. We want ((a + b) + c).

The high precedence of prefix operators worked. And it even works
great for infix operators. In the classic example for operator
precedences 1 + 2 * 3, the left-binding power of * would be higher
than the right-binding power of +. Parsing this would result in the 2
being passed to the infixParseFn associated with the * token.

Notable is that in our parser, every token has the same right- and left-
binding power. We simply use one value (in our precedences table) as



both. What this value means changes depending on the context.

If an operator should be right-associative instead of left-associative
(in the case of + that would result in (a + (b + c)) instead of ((a +
b) + c), then we must use a smaller “right-binding power” when
parsing the “right arm” of the operator expression. If you think about
the ++ and -- operators in other languages, where they can be used
in a pre- and a postfix position, you can see why it’s sometimes useful
to have differing left- and right-binding powers for operators.

Since we did not define separate right- and left-binding powers for
operators, but only use one value, we can’t just change a definition to
achieve this. But, as an example, to make + right-associate we can
decrement its precedence when calling parseExpression:

For demonstration purposes, let’s change this method for a minute
and see what happens:

// parser/parser.go

func (p *Parser) parseInfixExpression(left ast.Expression) ast.Expression {
    expression := &ast.InfixExpression{
        Token:    p.curToken,
        Operator: p.curToken.Literal,
        Left:     left,
    }

    precedence := p.curPrecedence()
    p.nextToken()
    expression.Right = p.parseExpression(precedence)
    //                                   ^^^ decrement here for right-associativity

    return expression
}

// parser/parser.go

func (p *Parser) parseInfixExpression(left ast.Expression) ast.Expression {
    expression := &ast.InfixExpression{
        Token:    p.curToken,
        Operator: p.curToken.Literal,



With this change made, our tests tell us that + is officially right-
associative:

And that marks the end of our deep dive into the bowels of
parseExpression. If you’re still unsure and can’t grasp how it works,
don’t worry, I felt the same. What really helped though was putting
tracing statements in the methods of Parser to see what was
happening when parsing certain expressions. In the folder of code
accompanying this chapter I’ve included a file called
./parser/parser_tracing.go, which we haven’t looked at before. The
file includes two function definitions that are really helpful when trying
to understand what the parser does: trace and untrace. Use them
like this:

        Left:     left,
    }

    precedence := p.curPrecedence()
    p.nextToken()

    if expression.Operator == "+" {
        expression.Right = p.parseExpression(precedence - 1)
    } else {
        expression.Right = p.parseExpression(precedence)
    }

    return expression
}

$ go test -run TestOperatorPrecedenceParsing ./parser
--- FAIL: TestOperatorPrecedenceParsing (0.00s)
  parser_test.go:359: expected="((a + b) + c)", got="(a + (b + c))"
  parser_test.go:359: expected="((a + b) - c)", got="(a + (b - c))"
  parser_test.go:359: expected="(((a + (b * c)) + (d / e)) - f)",\
    got="(a + ((b * c) + ((d / e) - f)))"
FAIL

// parser/parser.go

func (p *Parser) parseExpressionStatement() *ast.ExpressionStatement {
    defer untrace(trace("parseExpressionStatement"))



With these tracing statements included we can now use our parser
and see what it does. Here is the output when parsing the expression
statement -1 * 2 + 3 in the test suite:

// [...]
}

func (p *Parser) parseExpression(precedence int) ast.Expression {
    defer untrace(trace("parseExpression"))
// [...]
}

func (p *Parser) parseIntegerLiteral() ast.Expression {
    defer untrace(trace("parseIntegerLiteral"))
// [...]
}

func (p *Parser) parsePrefixExpression() ast.Expression {
    defer untrace(trace("parsePrefixExpression"))
// [...]
}

func (p *Parser) parseInfixExpression(left ast.Expression) ast.Expression {
    defer untrace(trace("parseInfixExpression"))
// [...]
}

$ go test -v -run TestOperatorPrecedenceParsing ./parser
=== RUN   TestOperatorPrecedenceParsing
BEGIN parseExpressionStatement
        BEGIN parseExpression
                BEGIN parsePrefixExpression
                        BEGIN parseExpression
                                BEGIN parseIntegerLiteral
                                END parseIntegerLiteral
                        END parseExpression
                END parsePrefixExpression
                BEGIN parseInfixExpression
                        BEGIN parseExpression
                                BEGIN parseIntegerLiteral
                                END parseIntegerLiteral
                        END parseExpression
                END parseInfixExpression
                BEGIN parseInfixExpression



                        BEGIN parseExpression
                                BEGIN parseIntegerLiteral
                                END parseIntegerLiteral
                        END parseExpression
                END parseInfixExpression
        END parseExpression
END parseExpressionStatement
--- PASS: TestOperatorPrecedenceParsing (0.00s)
PASS
ok      monkey/parser   0.008s



2.8 - Extending the Parser
Before we move on and extend our parser, we first need to clean up
and extend our existing test suite. I won’t bore you by listing the
complete changes, but I will show you a few small helper functions
that make the tests easier to understand.

We already have a testIntegerLiteral test helper. A second function
called testIdentifier can clean up a lot of other tests:

The fun part is now using testIntegerLiteral and testIdentifier to
build more generic helper functions:

// parser/parser_test.go

func testIdentifier(t *testing.T, exp ast.Expression, value string) bool {
    ident, ok := exp.(*ast.Identifier)
    if !ok {
        t.Errorf("exp not *ast.Identifier. got=%T", exp)
        return false
    }

    if ident.Value != value {
        t.Errorf("ident.Value not %s. got=%s", value, ident.Value)
        return false
    }

    if ident.TokenLiteral() != value {
        t.Errorf("ident.TokenLiteral not %s. got=%s", value,
            ident.TokenLiteral())
        return false
    }

    return true
}

// parser/parser_test.go

func testLiteralExpression(
    t *testing.T,



With these in place it’s possible to write test code like this:

    exp ast.Expression,
    expected interface{},
) bool {
    switch v := expected.(type) {
    case int:
        return testIntegerLiteral(t, exp, int64(v))
    case int64:
        return testIntegerLiteral(t, exp, v)
    case string:
        return testIdentifier(t, exp, v)
    }
    t.Errorf("type of exp not handled. got=%T", exp)
    return false
}

func testInfixExpression(t *testing.T, exp ast.Expression, left interface{},
    operator string, right interface{}) bool {

    opExp, ok := exp.(*ast.InfixExpression)
    if !ok {
        t.Errorf("exp is not ast.InfixExpression. got=%T(%s)", exp, exp)
        return false
    }

    if !testLiteralExpression(t, opExp.Left, left) {
        return false
    }

    if opExp.Operator != operator {
        t.Errorf("exp.Operator is not '%s'. got=%q", operator, opExp.Operator)
        return false
    }

    if !testLiteralExpression(t, opExp.Right, right) {
        return false
    }

    return true
}

testInfixExpression(t, stmt.Expression, 5, "+", 10)
testInfixExpression(t, stmt.Expression, "alice", "*", "bob")



That makes it a lot easier to test properties of the ASTs produced by
our parser. I went ahead and changed our existing parser tests to use
these new test helpers. In parser/parser_test.go you can see the
cleaned up and extended test suite.

Boolean Literals

There are a few things in the Monkey programming language that we
still need to implement in our parser and AST. Easiest are boolean
literals. In Monkey we can use booleans in place of any other
expression:

Like identifiers and integer literals their AST representation is simple
and small:

The Value field can hold values of the type bool, which means that
we’re going to save either true or false in there (the Go bool values,
not the Monkey literals). With the AST node defined we can now add
our tests.

The single TestBooleanExpression test function is so similar to the
existing TestIdentifierExpression and
TestIntegerLiteralExpression that I won’t show it here. It’s enough to

true;
false;
let foobar = true;
let barfoo = false;

// ast/ast.go

type Boolean struct {
    Token token.Token
    Value bool
}

func (b *Boolean) expressionNode()      {}
func (b *Boolean) TokenLiteral() string { return b.Token.Literal }
func (b *Boolean) String() string       { return b.Token.Literal }



show the error message which points us in the right direction as to
how to implement boolean literal parsing:

Of course, yes. We need to register a prefixParseFn for token.TRUE
and token.FALSE tokens.

And the parseBoolean method is exactly what you imagine it to be:

The only mildly interesting part about this method is the inlining of the
p.curTokenIs(token.TRUE) call, which is not really interesting. Other
than that it’s straightforward, maybe even boring. Or in other words:
the structure of our parser serves us well! That actually is one of the
beauties of Pratt’s approach: it’s so easy to extend.

And boom! The tests are green:

$ go test ./parser
--- FAIL: TestBooleanExpression (0.00s)
  parser_test.go:470: parser has 1 errors
  parser_test.go:472: parser error: "no prefix parse function for TRUE found"
FAIL
FAIL    monkey/parser   0.008s

// parser/parser.go

func New(l *lexer.Lexer) *Parser {
// [...]
    p.registerPrefix(token.TRUE, p.parseBoolean)
    p.registerPrefix(token.FALSE, p.parseBoolean)
// [...]
}

// parser/parser.go

func (p *Parser) parseBoolean() ast.Expression {
    return &ast.Boolean{Token: p.curToken, Value: p.curTokenIs(token.TRUE)}
}

$ go test ./parser
ok      monkey/parser   0.006s



But what’s interesting is that we can now extend several tests to
incorporate the newly implemented boolean literals. The first
candidate is TestOperatorPrecedenceParsing, with its string
comparison mechanism:

We can test for boolean literals in even more tests by extending our
testLiteralExpression helper and providing a new
testBooleanLiteral function:

// parser/parser_test.go

func TestOperatorPrecedenceParsing(t *testing.T) {
    tests := []struct {
        input    string
        expected string
    }{
// [...]
        {
            "true",
            "true",
        },
        {
            "false",
            "false",
        },
        {
            "3 > 5 == false",
            "((3 > 5) == false)",
        },
        {
            "3 < 5 == true",
            "((3 < 5) == true)",
        },
// [...]
}

// parser_test.go

func testLiteralExpression(
    t *testing.T,
    exp ast.Expression,
    expected interface{},
) bool {



Nothing surprising here, just another case in a switch statement and
a new helper function. But with this in place, it’s easy to extend
TestParsingInfixExpressions:

    switch v := expected.(type) {
// [...]
    case bool:
        return testBooleanLiteral(t, exp, v)
    }
// [...]
}

func testBooleanLiteral(t *testing.T, exp ast.Expression, value bool) bool {
    bo, ok := exp.(*ast.Boolean)
    if !ok {
        t.Errorf("exp not *ast.Boolean. got=%T", exp)
        return false
    }

    if bo.Value != value {
        t.Errorf("bo.Value not %t. got=%t", value, bo.Value)
        return false
    }

    if bo.TokenLiteral() != fmt.Sprintf("%t", value) {
        t.Errorf("bo.TokenLiteral not %t. got=%s",
            value, bo.TokenLiteral())
        return false
    }

    return true
}

// parser/parser_test.go

func TestParsingInfixExpressions(t *testing.T) {
    infixTests := []struct {
        input      string
        leftValue  interface{}
        operator   string
        rightValue interface{}
    }{
// [...]
        {"true == true", true, "==", true},



And also TestParsingPrefixExpressions is easy to extend by just
adding new entries to the test table:

It’s time to pat ourselves on the back! We implemented the parsing of
booleans and extended our tests in a way that gives us more test
coverage now and better tools later on. Good job!

Grouped Expressions

What we’re about to see next is sometimes called “the greatest trick
Vaughan Pratt ever pulled”. Actually, no, I just lied there, nobody says
that. But they should! I’m talking about parsing grouped expressions,

        {"true != false", true, "!=", false},
        {"false == false", false, "==", false},
    }

    for _, tt := range infixTests {
// [...]

        if !testInfixExpression(t, stmt.Expression, tt.leftValue,
            tt.operator, tt.rightValue) {
            return
        }
    }
}

// parser/parser_test.go

func TestParsingPrefixExpressions(t *testing.T) {
    prefixTests := []struct {
        input    string
        operator string
        value    interface{}
    }{
// [...]
        {"!true;", "!", true},
        {"!false;", "!", false},
    }
// [...]
}



of course. In Monkey we can group expression with parentheses to
influence their precedence and thus the order in which they are
evaluated in their context. We’ve seen the canonical example for this
before:

The parentheses group the 5 + 5 expression in order to give them a
higher precedence and position them deeper in the AST, resulting in
the correct evaluation order for this mathematical expression.

Now you might be thinking “Oh come on, not with the precedence
stuff again! My head still hurts! This guy…” and you contemplate
whether to skip to the end of this chapter. Don’t! You have to see this!

We’re not going to write a unit test for grouped expressions, since
they are not represented by a separate AST node type. Yes, that’s
right. We do not need to change our AST in order to parse grouped
expressions correctly! What we’re going to do instead is to extend
our TestOperatorPrecedenceParsing test function to make sure that
parentheses actually group expressions and have an effect on the
resulting AST.

(5 + 5) * 2;

// parser/parser_test.go

func TestOperatorPrecedenceParsing(t *testing.T) {
    tests := []struct {
        input    string
        expected string
    }{
// [...]
        {
            "1 + (2 + 3) + 4",
            "((1 + (2 + 3)) + 4)",
        },
        {
            "(5 + 5) * 2",
            "((5 + 5) * 2)",
        },
        {



They fail, as expected:

Here comes the mind-blowing part. In order to get these tests to pass,
all we need to do is add this:

            "2 / (5 + 5)",
            "(2 / (5 + 5))",
        },
        {
            "-(5 + 5)",
            "(-(5 + 5))",
        },
        {
            "!(true == true)",
            "(!(true == true))",
        },
    }

// [...]
}

$ go test ./parser
--- FAIL: TestOperatorPrecedenceParsing (0.00s)
  parser_test.go:531: parser has 3 errors
  parser_test.go:533: parser error: "no prefix parse function for ( found"
  parser_test.go:533: parser error: "no prefix parse function for ) found"
  parser_test.go:533: parser error: "no prefix parse function for + found"
FAIL
FAIL    monkey/parser   0.007s

// parser/parser.go

func New(l *lexer.Lexer) *Parser {
// [...]
    p.registerPrefix(token.LPAREN, p.parseGroupedExpression)
// [...]
}

func (p *Parser) parseGroupedExpression() ast.Expression {
    p.nextToken()

    exp := p.parseExpression(LOWEST)

    if !p.expectPeek(token.RPAREN) {



And that’s it! Yes, it really is. The tests pass and the parentheses
work as expected by boosting the precedence of the enclosed
expressions. The concept of associating token types with functions
really shines here. That’s all there is to it. There is nothing happening
here that we haven’t seen before.

I told you, didn’t I? It’s a great trick. With that said, let’s keep some of
the magic and move on.

If Expressions

In Monkey we can use if and else just like we did hundreds of times
in other programming languages:

The else is optional and can be left out:

That’s all very familiar. In Monkey though, if-else-conditionals are
expressions. That means that they produce a value and in the case of
if expressions that’s the last evaluated line. We don’t need the return
statements here:

        return nil
    }

    return exp
}

if (x > y) {
  return x;
} else {
  return y;
}

if (x > y) {
  return x;
}

let foobar = if (x > y) { x } else { y };



Explaining the structure of if-else-conditionals is probably not
necessary, but just so we’re clear on the naming, here it is:

The braces are part of consequence and alternative, because both
are block statements. Block statements are a series of statements
(just like programs in Monkey) enclosed by an opening { and a
closing }.

So far our recipe for success has been to “define AST nodes, write
tests, make tests pass by writing parsing code, celebrate, pat
ourselves on the back, congratulate each other, tell everyone” and,
well, there’s no reason to change it now.

Here is the definition of the ast.IfExpression AST node:

if (<condition>) <consequence> else <alternative>

// ast/ast.go

type IfExpression struct {
    Token       token.Token // The 'if' token
    Condition   Expression
    Consequence *BlockStatement
    Alternative *BlockStatement
}

func (ie *IfExpression) expressionNode()      {}
func (ie *IfExpression) TokenLiteral() string { return ie.Token.Literal }
func (ie *IfExpression) String() string {
    var out bytes.Buffer

    out.WriteString("if")
    out.WriteString(ie.Condition.String())
    out.WriteString(" ")
    out.WriteString(ie.Consequence.String())

    if ie.Alternative != nil {
        out.WriteString("else ")
        out.WriteString(ie.Alternative.String())
    }



No surprises here. ast.IfExpression fulfills the ast.Expression
interface and has three fields that can represent an if-else-
conditional. Condition holds the condition, which can be any
expression, and Consequence and Alternative point to the
consequence and alternative of the conditional respectively. But they
reference a new type, ast.BlockStatement. As we saw before, the
consequence/alternative of an if-else-condition is just a series of
statements. That’s exactly what ast.BlockStatement represents:

The next step in our recipe for success is to add a test. By now, we
know the drill and the test looks familiar:

    return out.String()
}

// ast/ast.go

type BlockStatement struct {
    Token      token.Token // the { token
    Statements []Statement
}

func (bs *BlockStatement) statementNode()       {}
func (bs *BlockStatement) TokenLiteral() string { return bs.Token.Literal }
func (bs *BlockStatement) String() string {
    var out bytes.Buffer

    for _, s := range bs.Statements {
        out.WriteString(s.String())
    }

    return out.String()
}

// parser/parser_test.go

func TestIfExpression(t *testing.T) {
    input := `if (x < y) { x }`

    l := lexer.New(input)
    p := New(l)
    program := p.ParseProgram()



    checkParserErrors(t, p)

    if len(program.Statements) != 1 {
        t.Fatalf("program.Statements does not contain %d statements. got=%d\n",
            1, len(program.Statements))
    }

    stmt, ok := program.Statements[0].(*ast.ExpressionStatement)
    if !ok {
        t.Fatalf("program.Statements[0] is not ast.ExpressionStatement. got=%T",
            program.Statements[0])
    }

    exp, ok := stmt.Expression.(*ast.IfExpression)
    if !ok {
        t.Fatalf("stmt.Expression is not ast.IfExpression. got=%T",
            stmt.Expression)
    }

    if !testInfixExpression(t, exp.Condition, "x", "<", "y") {
        return
    }

    if len(exp.Consequence.Statements) != 1 {
        t.Errorf("consequence is not 1 statements. got=%d\n",
            len(exp.Consequence.Statements))
    }

    consequence, ok := exp.Consequence.Statements[0].(*ast.ExpressionStatement)
    if !ok {
        t.Fatalf("Statements[0] is not ast.ExpressionStatement. got=%T",
            exp.Consequence.Statements[0])
    }

    if !testIdentifier(t, consequence.Expression, "x") {
        return
    }

    if exp.Alternative != nil {
        t.Errorf("exp.Alternative.Statements was not nil. got=%+v", exp.Alternative)
    }
}



I also added a TestIfElseExpression test function that uses the
following test input:

In TestIfElseExpression there are additional assertions on the
Alternative field of *ast.IfExpression. Both tests make assertions
about the structure of the resulting *ast.IfExpression node and use
the helper functions testInfixExpression and testIdentifier to keep
the focus on the conditional itself but also make sure that the rest of
our parser is correctly integrated.

Both tests fail with a lot of error messages. But we are familiar with all
of them by now:

We’re going to start with the first failing test: TestIfExpression.
Clearly, we need to register a prefixParseFn for token.IF tokens.

if (x < y) { x } else { y }

$ go test ./parser
--- FAIL: TestIfExpression (0.00s)
  parser_test.go:659: parser has 3 errors
  parser_test.go:661: parser error: "no prefix parse function for IF found"
  parser_test.go:661: parser error: "no prefix parse function for { found"
  parser_test.go:661: parser error: "no prefix parse function for } found"
--- FAIL: TestIfElseExpression (0.00s)
  parser_test.go:659: parser has 6 errors
  parser_test.go:661: parser error: "no prefix parse function for IF found"
  parser_test.go:661: parser error: "no prefix parse function for { found"
  parser_test.go:661: parser error: "no prefix parse function for } found"
  parser_test.go:661: parser error: "no prefix parse function for ELSE found"
  parser_test.go:661: parser error: "no prefix parse function for { found"
  parser_test.go:661: parser error: "no prefix parse function for } found"
FAIL
FAIL    monkey/parser   0.007s

// parser/parser.go

func New(l *lexer.Lexer) *Parser {
// [...]
    p.registerPrefix(token.IF, p.parseIfExpression)
// [...]



In no other parsing function did we use expectPeek so extensively.
There just wasn’t a need. Here it makes sense. expectPeek adds an
error to the parser if p.peekToken is not of the expected type, but if it
is, then it advances the tokens by calling the nextToken method.
That’s exactly what we need here. We need there to be a ( right after
the if and if it’s there we need to jump over it. The same goes for the
) after the expression and the { that marks the beginning of a block
statement.

This method also follows our parsing function protocol: the tokens get
advanced just enough so that parseBlockStatement sits on the { with
p.curToken being of type token.LBRACE. Here is parseBlockStatement:

}

func (p *Parser) parseIfExpression() ast.Expression {
    expression := &ast.IfExpression{Token: p.curToken}

    if !p.expectPeek(token.LPAREN) {
        return nil
    }

    p.nextToken()
    expression.Condition = p.parseExpression(LOWEST)

    if !p.expectPeek(token.RPAREN) {
        return nil
    }

    if !p.expectPeek(token.LBRACE) {
        return nil
    }

    expression.Consequence = p.parseBlockStatement()

    return expression
}

// parser/parser.go

func (p *Parser) parseBlockStatement() *ast.BlockStatement {
    block := &ast.BlockStatement{Token: p.curToken}



parseBlockStatement calls parseStatement until it encounters either a
}, which signifies the end of the block statement, or a token.EOF,
which tells us that there’s no more tokens left to parse. In that case,
we can’t successfully parse the block statement and there’s no need
to keep on calling parseStatement in an endless loop.

This looks really similar to our top-level ParseProgram method, where
we also call parseStatement repeatedly until we encounter an “end
token”, which in the case of ParseProgram is just the token.EOF token.
The duplication of the loop doesn’t hurt though, so we leave these
two methods be and instead take care of our tests:

TestIfExpression passes and TestIfElseExpression does not,
exactly as expected. Now, in order to support the else part of an if-
else-condition, we need to check if it even exists and if so we need to
parse the block statement that comes directly after the else:

    block.Statements = []ast.Statement{}

    p.nextToken()

    for !p.curTokenIs(token.RBRACE) && !p.curTokenIs(token.EOF) {
        stmt := p.parseStatement()
        if stmt != nil {
            block.Statements = append(block.Statements, stmt)
        }
        p.nextToken()
    }

    return block
}

$ go test ./parser
--- FAIL: TestIfElseExpression (0.00s)
  parser_test.go:659: parser has 3 errors
  parser_test.go:661: parser error: "no prefix parse function for ELSE found"
  parser_test.go:661: parser error: "no prefix parse function for { found"
  parser_test.go:661: parser error: "no prefix parse function for } found"
FAIL
FAIL    monkey/parser   0.007s



That’s all there is to it. The whole part of this method is constructed in
a way that allows an optional else but doesn’t add a parser error if
there is none. After we parse the consequence-block-statement we
check if the next token is a token.ELSE token. Remember, at the end
of parseBlockStatement we’re sitting on the }. If we have a
token.ELSE, we advance the tokens two times. The first time with a
call to nextToken, since we already know that the p.peekToken is the
else. Then with a call to expectPeek since now the next token has to
be the opening brace of a block statement, otherwise the program is
invalid.

Yes, parsing is prone to off-by-one errors. It’s easy to forget
advancing the tokens or make a wrong call to nextToken. Having a
strict protocol that dictates how every parsing function has to
advance tokens helps a lot. Luckily we also have a great test suite
that lets us know everything works:

// parser/parser.go

func (p *Parser) parseIfExpression() ast.Expression {
// [...]
    expression.Consequence = p.parseBlockStatement()

    if p.peekTokenIs(token.ELSE) {
        p.nextToken()

        if !p.expectPeek(token.LBRACE) {
            return nil
        }

        expression.Alternative = p.parseBlockStatement()
    }

    return expression
}

$ go test ./parser
ok      monkey/parser   0.007s



I don’t think I have to tell you anymore: good job all around! We did it
- again.

Function Literals

You may have noticed that the parseIfExpression method we just
added has a lot more meat to it than any of the prefixParseFns or
infixParseFns we wrote before. The main reason is that we had to
work with many different token and expression types and even
optional parts. What we’re going to do next is similar in its difficulty
and variety of involved token types. We’re going to parse function
literals.

In Monkey a function literal is how we define functions: which
parameters they have and what the function does. Function literals
look like this:

It starts with the keyword fn, followed by a list of parameters, followed
by a block statement, which is the function’s body, that gets executed
when the function is called. The abstract structure of a function literal
is this:

We already know what block statements are and how to parse them.
The parameters are new though, but not much more difficult to parse.
They are just a list of identifiers that are comma-separated and
surrounded by parentheses:

This list can also be empty:

fn(x, y) {
  return x + y;
}

fn <parameters> <block statement>

(<parameter one>, <parameter two>, <parameter three>, ...)



That’s the structure of function literals. But what type of AST node are
they? Expressions, of course! We can use function literals in every
place where any other expression is valid. For example, here is a
function literal as the expression in a let statement:

And here is a function literal as the expression in a return statement
inside another function literal:

Using a function literal as an argument when calling another function
is also possible:

That does sound complicated, but it’s not. One of the great things
about our parser is that once we define function literals as
expressions and provide a function to correctly parse them the rest
works. Sounds amazing? I agree.

We just saw that the two main parts of a function literal are the list of
parameters and the block statement that is the function’s body. That’s
all we need to keep in mind when defining the AST node:

fn() {
  return foobar + barfoo;
}

let myFunction = fn(x, y) { return x + y; }

fn() {
  return fn(x, y) { return x > y; };
}

myFunc(x, y, fn(x, y) { return x > y; });

// ast/ast.go

import (
// [...]
    "strings"
)

type FunctionLiteral struct {



The Parameters field is a slice of *ast.Identifiers, because that’s all
there is to it, and Body is an *ast.BlockStatement, which we saw and
used before.

Here is the test, in which we can use our helper functions
testLiteralExpression and testInfixExpression again:

    Token      token.Token // The 'fn' token
    Parameters []*Identifier
    Body       *BlockStatement
}

func (fl *FunctionLiteral) expressionNode()      {}
func (fl *FunctionLiteral) TokenLiteral() string { return fl.Token.Literal }
func (fl *FunctionLiteral) String() string {
    var out bytes.Buffer

    params := []string{}
    for _, p := range fl.Parameters {
        params = append(params, p.String())
    }

    out.WriteString(fl.TokenLiteral())
    out.WriteString("(")
    out.WriteString(strings.Join(params, ", "))
    out.WriteString(") ")
    out.WriteString(fl.Body.String())

    return out.String()
}

// parser/parser_test.go

func TestFunctionLiteralParsing(t *testing.T) {
    input := `fn(x, y) { x + y; }`

    l := lexer.New(input)
    p := New(l)
    program := p.ParseProgram()
    checkParserErrors(t, p)

    if len(program.Statements) != 1 {
        t.Fatalf("program.Statements does not contain %d statements. got=%d\n",



So, the test has three main parts: check that the
*ast.FunctionLiteral is there, check that the parameter list is correct
and make sure that the function body contains the correct
statements. The last part is not strictly necessary, since we already
tested parsing block statements before in our tests for IfExpressions.

            1, len(program.Statements))
    }

    stmt, ok := program.Statements[0].(*ast.ExpressionStatement)
    if !ok {
        t.Fatalf("program.Statements[0] is not ast.ExpressionStatement. got=%T",
            program.Statements[0])
    }

    function, ok := stmt.Expression.(*ast.FunctionLiteral)
    if !ok {
        t.Fatalf("stmt.Expression is not ast.FunctionLiteral. got=%T",
            stmt.Expression)
    }

    if len(function.Parameters) != 2 {
        t.Fatalf("function literal parameters wrong. want 2, got=%d\n",
            len(function.Parameters))
    }

    testLiteralExpression(t, function.Parameters[0], "x")
    testLiteralExpression(t, function.Parameters[1], "y")

    if len(function.Body.Statements) != 1 {
        t.Fatalf("function.Body.Statements has not 1 statements. got=%d\n",
            len(function.Body.Statements))
    }

    bodyStmt, ok := function.Body.Statements[0].(*ast.ExpressionStatement)
    if !ok {
        t.Fatalf("function body stmt is not ast.ExpressionStatement. got=%T",
            function.Body.Statements[0])
    }

    testInfixExpression(t, bodyStmt.Expression, "x", "+", "y")
}



But I’m okay with duplicating some test assertions here that possibly
alarm us when hooking up the parsing of block statements failed.

With only ast.FunctionLiteral defined and nothing changed in the
parser, the tests fail:

It’s clear that we need to register a new prefixParseFn for
token.FUNCTION tokens.

$ go test ./parser
--- FAIL: TestFunctionLiteralParsing (0.00s)
  parser_test.go:755: parser has 6 errors
  parser_test.go:757: parser error: "no prefix parse function for FUNCTION found"
  parser_test.go:757: parser error: "expected next token to be ), got , instead"
  parser_test.go:757: parser error: "no prefix parse function for , found"
  parser_test.go:757: parser error: "no prefix parse function for ) found"
  parser_test.go:757: parser error: "no prefix parse function for { found"
  parser_test.go:757: parser error: "no prefix parse function for } found"
FAIL
FAIL    monkey/parser   0.007s

// parser/parser.go

func New(l *lexer.Lexer) *Parser {
// [...]
    p.registerPrefix(token.FUNCTION, p.parseFunctionLiteral)
// [...]
}

func (p *Parser) parseFunctionLiteral() ast.Expression {
    lit := &ast.FunctionLiteral{Token: p.curToken}

    if !p.expectPeek(token.LPAREN) {
        return nil
    }

    lit.Parameters = p.parseFunctionParameters()

    if !p.expectPeek(token.LBRACE) {
        return nil
    }

    lit.Body = p.parseBlockStatement()



The parseFunctionParameters method we use here to parse the
literal’s parameters looks like this:

There’s the heart of the matter. parseFunctionParameters constructs
the slice of parameters by repeatedly building identifiers from the
comma separated list. It also makes an early exit if the list is empty
and it carefully handles lists of varying sizes.

    return lit
}

// parser/parser.go

func (p *Parser) parseFunctionParameters() []*ast.Identifier {
    identifiers := []*ast.Identifier{}

    if p.peekTokenIs(token.RPAREN) {
        p.nextToken()
        return identifiers
    }

    p.nextToken()

    ident := &ast.Identifier{Token: p.curToken, Value: p.curToken.Literal}
    identifiers = append(identifiers, ident)

    for p.peekTokenIs(token.COMMA) {
        p.nextToken()
        p.nextToken()
        ident := &ast.Identifier{Token: p.curToken, Value: p.curToken.Literal}
        identifiers = append(identifiers, ident)
    }

    if !p.expectPeek(token.RPAREN) {
        return nil
    }

    return identifiers
}



For a method like this it really pays off to have another set of tests
that check the edge cases: an empty parameter list, a list with one
parameter and a list with multiple parameters.

Both of these test functions now pass:

Function literals are in the bag! Sweet! There is only one last thing to
do now before we can leave the parser and start talking about the

// parser/parser_test.go

func TestFunctionParameterParsing(t *testing.T) {
    tests := []struct {
        input          string
        expectedParams []string
    }{
        {input: "fn() {};", expectedParams: []string{}},
        {input: "fn(x) {};", expectedParams: []string{"x"}},
        {input: "fn(x, y, z) {};", expectedParams: []string{"x", "y", "z"}},
    }

    for _, tt := range tests {
        l := lexer.New(tt.input)
        p := New(l)
        program := p.ParseProgram()
        checkParserErrors(t, p)

        stmt := program.Statements[0].(*ast.ExpressionStatement)
        function := stmt.Expression.(*ast.FunctionLiteral)

        if len(function.Parameters) != len(tt.expectedParams) {
            t.Errorf("length parameters wrong. want %d, got=%d\n",
                len(tt.expectedParams), len(function.Parameters))
        }

        for i, ident := range tt.expectedParams {
            testLiteralExpression(t, function.Parameters[i], ident)
        }
    }
}

$ go test ./parser
ok      monkey/parser   0.007s



evaluation of our AST.

Call Expressions

Now that we know how to parse function literals the next step is to
parse the calling of a function: call expressions. Here is their
structure:

What? Yup, that’s it, but granted, a few examples are needed. Here is
the normal call expression we all know:

Now think about this: the add is an identifier. And identifiers are
expressions. The arguments 2 and 3 are expressions too - integer
literals. But they don’t have to be, the arguments are just a list of
expressions:

That’s valid, too. The first argument is the infix expression 2 + 2 and
the second one is 3 * 3 * 3. So far, so good. Now, let’s look at the
function that’s being called here. In this case the function is bound to
the identifier add. The identifier add returns this function when it’s
evaluated. That means, we could go straight to the source, skip the
identifier and replace add with a function literal:

Yes, that’s valid. We can also use function literals as arguments:

Let’s look at the structure again:

<expression>(<comma separated expressions>)

add(2, 3)

add(2 + 2, 3 * 3 * 3)

fn(x, y) { x + y; }(2, 3)

callsFunction(2, 3, fn(x, y) { x + y; });

<expression>(<comma separated expressions>)



Call expressions consist of an expression that results in a function
when evaluated and a list of expressions that are the arguments to
this function call. As an AST node they look like this:

The test case for call expressions is just like the rest of our test suite
and makes assertions about the *ast.CallExpression structure:

// ast/ast.go

type CallExpression struct {
    Token     token.Token // The '(' token
    Function  Expression  // Identifier or FunctionLiteral
    Arguments []Expression
}

func (ce *CallExpression) expressionNode()      {}
func (ce *CallExpression) TokenLiteral() string { return ce.Token.Literal }
func (ce *CallExpression) String() string {
    var out bytes.Buffer

    args := []string{}
    for _, a := range ce.Arguments {
        args = append(args, a.String())
    }

    out.WriteString(ce.Function.String())
    out.WriteString("(")
    out.WriteString(strings.Join(args, ", "))
    out.WriteString(")")

    return out.String()
}

// parser/parser_test.go

func TestCallExpressionParsing(t *testing.T) {
    input := "add(1, 2 * 3, 4 + 5);"

    l := lexer.New(input)
    p := New(l)
    program := p.ParseProgram()
    checkParserErrors(t, p)



As with function literals and parameter parsing it’s also a good idea to
add a separate test for the argument parsing. Just to make sure that
every corner case works and is covered by a test. I added a
TestCallExpressionParameterParsing test function that does exactly
this. You can see it in the code for this chapter.

So far, so familiar. But now comes the twist. If we run the tests we get
this error message:

    if len(program.Statements) != 1 {
        t.Fatalf("program.Statements does not contain %d statements. got=%d\n",
            1, len(program.Statements))
    }

    stmt, ok := program.Statements[0].(*ast.ExpressionStatement)
    if !ok {
        t.Fatalf("stmt is not ast.ExpressionStatement. got=%T",
            program.Statements[0])
    }

    exp, ok := stmt.Expression.(*ast.CallExpression)
    if !ok {
        t.Fatalf("stmt.Expression is not ast.CallExpression. got=%T",
            stmt.Expression)
    }

    if !testIdentifier(t, exp.Function, "add") {
        return
    }

    if len(exp.Arguments) != 3 {
        t.Fatalf("wrong length of arguments. got=%d", len(exp.Arguments))
    }

    testLiteralExpression(t, exp.Arguments[0], 1)
    testInfixExpression(t, exp.Arguments[1], 2, "*", 3)
    testInfixExpression(t, exp.Arguments[2], 4, "+", 5)
}

$ go test ./parser
--- FAIL: TestCallExpressionParsing (0.00s)
  parser_test.go:853: parser has 4 errors
  parser_test.go:855: parser error: "expected next token to be ), got , instead"



Huh, that doesn’t make a lot of sense. Why is there no error message
telling us to register a prefixParseFn for call expressions? Because
there are no new token types in call expressions. So what do we do
instead of registering a prefixParseFn? Take at look at this:

The add is an identifier that’s parsed by a prefixParseFn. And after the
identifier comes a token.LPAREN, right between the identifier and the
list of arguments, just in the middle, in infix position… Yes, we need to
register an infixParseFn for token.LPAREN. This way we parse the
expression that is the function (either an identifier, or a function
literal), then check for an infixParseFn associated with token.LPAREN
and call it with the already parsed expression as argument. And in
this infixParseFn we can then parse the argument list. Perfect!

  parser_test.go:855: parser error: "no prefix parse function for , found"
  parser_test.go:855: parser error: "no prefix parse function for , found"
  parser_test.go:855: parser error: "no prefix parse function for ) found"
FAIL
FAIL    monkey/parser   0.007s

add(2, 3);

// parser/parser.go

func New(l *lexer.Lexer) *Parser {
// [...]
    p.registerInfix(token.LPAREN, p.parseCallExpression)
// [...]
}

func (p *Parser) parseCallExpression(function ast.Expression) ast.Expression {
    exp := &ast.CallExpression{Token: p.curToken, Function: function}
    exp.Arguments = p.parseCallArguments()
    return exp
}

func (p *Parser) parseCallArguments() []ast.Expression {
    args := []ast.Expression{}

    if p.peekTokenIs(token.RPAREN) {
        p.nextToken()



parseCallExpression receives the already parsed function as
argument and uses it to construct an *ast.CallExpression node. To
parse the argument list we call parseCallArguments, which looks
strikingly similar to parseFunctionParameters, except that it’s more
generic and returns a slice of ast.Expression and not
*ast.Identifier.

There is nothing here we haven’t seen before. All we did was register
a new infixParseFn. The tests still fail though:

The reason that it still doesn’t work is that the ( in add(1, 2) acts like
an infix operator now, but we haven’t assigned a precedence to it. It
doesn’t have the right “stickiness” yet, so parseExpression doesn’t

        return args
    }

    p.nextToken()
    args = append(args, p.parseExpression(LOWEST))

    for p.peekTokenIs(token.COMMA) {
        p.nextToken()
        p.nextToken()
        args = append(args, p.parseExpression(LOWEST))
    }

    if !p.expectPeek(token.RPAREN) {
        return nil
    }

    return args
}

$ go test ./parser
--- FAIL: TestCallExpressionParsing (0.00s)
  parser_test.go:853: parser has 4 errors
  parser_test.go:855: parser error: "expected next token to be ), got , instead"
  parser_test.go:855: parser error: "no prefix parse function for , found"
  parser_test.go:855: parser error: "no prefix parse function for , found"
  parser_test.go:855: parser error: "no prefix parse function for ) found"
FAIL
FAIL    monkey/parser   0.007s



return what we want. But call expressions have the highest
precedence of all, so it’s important that we fix our precedences table:

To make sure that call expressions really have the highest
precedence we can just extend our TestOperatorPrecedenceParsing
test function:

If we now run the tests again, we can see that all of them pass:

// parser/parser.go

var precedences = map[token.TokenType]int{
// [...]
    token.LPAREN:   CALL,
}

// parser/parser_test.go

func TestOperatorPrecedenceParsing(t *testing.T) {
    tests := []struct {
        input    string
        expected string
    }{
// [...]
        {
            "a + add(b * c) + d",
            "((a + add((b * c))) + d)",
        },
        {
            "add(a, b, 1, 2 * 3, 4 + 5, add(6, 7 * 8))",
            "add(a, b, 1, (2 * 3), (4 + 5), add(6, (7 * 8)))",
        },
        {
            "add(a + b + c * d / f + g)",
            "add((((a + b) + ((c * d) / f)) + g))",
        },
    }

// [...]
}

$ go test ./parser
ok      monkey/parser   0.008s



Yes, all of them: the unit test, the test for argument parsing and the
precedence tests - wow! They all pass! And if that wasn’t enough,
here’s some more good news: we are done. Yes, the parser is
finished. Granted, we’ll come back to it later, at the end of the book, to
extend it once more. But for now: that’s it! The AST is fully defined
and the parser works - it’s time to move on to the topic of evaluation.

Before we do that though, let’s remove the TODOs we left in the code
and extend our REPL to integrate the parser.

Removing TODOs

When we wrote the code that parses let and return statements we
took a shortcut by skipping over the expressions:

The same TODO sits in parseReturnStatement. It’s time to get rid of
them. No shortcuts. First of all, we need to extend our existing tests to

// parser/parser.go

func (p *Parser) parseLetStatement() *ast.LetStatement {
    stmt := &ast.LetStatement{Token: p.curToken}

    if !p.expectPeek(token.IDENT) {
        return nil
    }

    stmt.Name = &ast.Identifier{Token: p.curToken, Value: p.curToken.Literal}

    if !p.expectPeek(token.ASSIGN) {
        return nil
    }

    // TODO: We're skipping the expressions until we
    // encounter a semicolon
    for !p.curTokenIs(token.SEMICOLON) {
        p.nextToken()
    }

    return stmt
}



make sure that the expressions, that are parsed as part of a let or
return statement, are actually there. We do this by using our helper
functions (that don’t distract from the focus of the test) and different
expression types, so we know that parseExpression is correctly
integrated.

Here is what the TestLetStatement function looks like:

// parser/parser_test.go

func TestLetStatements(t *testing.T) {
    tests := []struct {
        input              string
        expectedIdentifier string
        expectedValue      interface{}
    }{
        {"let x = 5;", "x", 5},
        {"let y = true;", "y", true},
        {"let foobar = y;", "foobar", "y"},
    }

    for _, tt := range tests {
        l := lexer.New(tt.input)
        p := New(l)
        program := p.ParseProgram()
        checkParserErrors(t, p)

        if len(program.Statements) != 1 {
            t.Fatalf("program.Statements does not contain 1 statements. got=%d",
                len(program.Statements))
        }

        stmt := program.Statements[0]
        if !testLetStatement(t, stmt, tt.expectedIdentifier) {
            return
        }

        val := stmt.(*ast.LetStatement).Value
        if !testLiteralExpression(t, val, tt.expectedValue) {
            return
        }
    }
}



The same needs to be done for TestReturnStatements. And the fix is
trivial, since we did such great work before. We merely need to hook
up parseExpression in parseReturnStatement and parseLetStatement.
And we also need to take care of optional semicolons, which we
already know how to do from parseExpressionStatement. The
updated, fully-working versions of parseReturnStatement and
parseLetStatement look like this:

// parser/parser.go

func (p *Parser) parseReturnStatement() *ast.ReturnStatement {
    stmt := &ast.ReturnStatement{Token: p.curToken}

    p.nextToken()

    stmt.ReturnValue = p.parseExpression(LOWEST)

    if p.peekTokenIs(token.SEMICOLON) {
        p.nextToken()
    }

    return stmt
}

func (p *Parser) parseLetStatement() *ast.LetStatement {
    stmt := &ast.LetStatement{Token: p.curToken}

    if !p.expectPeek(token.IDENT) {
        return nil
    }

    stmt.Name = &ast.Identifier{Token: p.curToken, Value: p.curToken.Literal}

    if !p.expectPeek(token.ASSIGN) {
        return nil
    }

    p.nextToken()

    stmt.Value = p.parseExpression(LOWEST)

    if p.peekTokenIs(token.SEMICOLON) {
        p.nextToken()



Ah! All TODOs removed from the code. Let’s take this parser for a
test drive.

    }

    return stmt
}



2.9 - Read-Parse-Print-Loop
Up until now our REPL was more of a RLPL, a read-lex-print-loop.
We don’t know how to evaluate code yet, so replacing the “lex” with
“evaluate” is still out of the question. But what we most certainly know
by now is parsing. It’s time to replace the “lex” with “parse” and build a
RPPL.

// repl/repl.go

import (
    "bufio"
    "fmt"
    "io"
    "monkey/lexer"
    "monkey/parser"
)

func Start(in io.Reader, out io.Writer) {
    scanner := bufio.NewScanner(in)

    for {
        fmt.Fprintf(out, PROMPT)
        scanned := scanner.Scan()
        if !scanned {
            return
        }

        line := scanner.Text()
        l := lexer.New(line)
        p := parser.New(l)

        program := p.ParseProgram()
        if len(p.Errors()) != 0 {
            printParserErrors(out, p.Errors())
            continue
        }

        io.WriteString(out, program.String())
        io.WriteString(out, "\n")
    }



Here we extend our loop to parse the line we just entered in the
REPL. The output of the parser, an *ast.Program, is then printed by
calling its String method, which recursively calls the String method
of all statements belonging to that program. Now we can take the
parser for a spin - interactively on the command line:

Sweet! Now instead of calling String we could use any string-based
representation of the AST to output here. We could add a
PrettyPrint method that prints the type of the AST node and indents
its child nodes correctly, or we could use ASCII color codes, or we
could print an ASCII graph, or… The point is: the sky is the limit.

But our RPPL still has a huge drawback. Here is what happens when
the parser runs into an error:

}

func printParserErrors(out io.Writer, errors []string) {
    for _, msg := range errors {
        io.WriteString(out, "\t"+msg+"\n")
    }
}

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> let x = 1 * 2 * 3 * 4 * 5
let x = ((((1 * 2) * 3) * 4) * 5);
>> x * y / 2 + 3 * 8 - 123
((((x * y) / 2) + (3 * 8)) - 123)
>> true == false
(true == false)
>>

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> let x 12 * 3;
        expected next token to be =, got INT instead
>>



That’s not a very nice error message. I mean, it does the job, yes, but
it’s not very nice, is it? The Monkey programming language deserves
better. Here is a more user-friendly printParseError function that
enhances the user-experience:

That’s better! If we now run into any parser errors, we get to see a
monkey, which, really, is more than anyone could ask for:

// repl/repl.go

const MONKEY_FACE = `            __,__
   .--.  .-"     "-.  .--.
  / .. \/  .-. .-.  \/ .. \
 | |  '|  /   Y   \  |'  | |
 | \   \  \ 0 | 0 /  /   / |
  \ '- ,\.-"""""""-./, -' /
   ''-' /_   ^ ^   _\ '-''
       |  \._   _./  |
       \   \ '~' /   /
        '._ '-=-' _.'
           '-----'
`

func printParserErrors(out io.Writer, errors []string) {
    io.WriteString(out, MONKEY_FACE)
    io.WriteString(out, "Woops! We ran into some monkey business here!\n")
    io.WriteString(out, " parser errors:\n")
    for _, msg := range errors {
        io.WriteString(out, "\t"+msg+"\n")
    }
}

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> let x 12 * 3
            __,__
   .--.  .-"     "-.  .--.
  / .. \/  .-. .-.  \/ .. \
 | |  '|  /   Y   \  |'  | |
 | \   \  \ 0 | 0 /  /   / |
  \ '- ,\.-"""""""-./, -' /
   ''-' /_   ^ ^   _\ '-''



On second thought… Anyway, it’s time to start evaluating our AST.

       |  \._   _./  |
       \   \ '~' /   /
        '._ '-=-' _.'
           '-----'
Woops! We ran into some monkey business here!
 parser errors:
        expected next token to be =, got INT instead
>>



Evaluation



3.1 - Giving Meaning to Symbols
We are finally here. Evaluation. The E in REPL and the last thing an
interpreter has to do when processing source code. This is where
code becomes meaningful. Without evaluation an expression like 1 +
2 is just a series of characters, tokens, or a tree structure that
represents this expression. It doesn’t mean anything. Evaluated, of
course, 1 + 2 becomes 3. 5 > 1 becomes true, 5 < 1 becomes false
and puts("Hello World!") becomes the friendly message we all
know.

The evaluation process of an interpreter defines how the
programming language being interpreted works.

Whether this returns a or b depends on the decision of the
interpreter’s evaluation process whether the integer 5 is truthy or not.
In some languages it’s truthy, in others we’d need to use an
expression that produces a boolean like 5 != 0.

Consider this:

let num = 5;
if (num) {
  return a;
} else {
  return b;
}

let one = fn() {
  printLine("one");
  return 1;
};

let two = fn() {
  printLine("two");
  return 2;
};



Does this first output one and then two or the other way around? It
depends on the specification of the language and ultimately on the
implementation of its interpreter and in which order it evaluates the
arguments in a call expression.

In this chapter there will be many more small choices like these,
where we get to decide how Monkey is going to work and how our
interpreter evaluates Monkey source code.

Maybe you’re skeptical, after I told you that writing a parser was fun,
but trust me: this is the best part. This is where the Monkey
programming language comes to life, where source code quickens
and starts to breathe.

add(one(), two());



3.2 - Strategies of Evaluation
Evaluation is also where interpreter implementations (regardless of
which language they’re interpreting) diverge the most. There are a lot
of different strategies to choose from when evaluating source code.
I’ve already hinted at this in the introduction of this book, where we
took a brief look at different interpreter architectures. Now that we’re
here, AST in hand, the question of what to do with it and how to
evaluate this shiny tree of ours is more relevant than ever, so looking
at different options again is worthwhile.

Before we start, though, it’s also worth noting again that the line
between interpreters and compilers is a blurry one. The notion of an
interpreter as something that doesn’t leave executable artifacts
behind (in contrast to a compiler, which does just that) gets fuzzy real
fast when looking at the implementations of real-world and highly-
optimized programming languages.

With that said, the most obvious and classical choice of what to do
with the AST is to just interpret it. Traverse the AST, visit each node
and do what the node signifies: print a string, add two numbers,
execute a function’s body - all on the fly. Interpreters working this way
are called “tree-walking interpreters” and are the archetype of
interpreters. Sometimes their evaluation step is preceded by small
optimizations that rewrite the AST (e.g.  remove unused variable
bindings) or convert it into another intermediate representation (IR)
that’s more suitable for recursive and repeated evaluation.

Other interpreters also traverse the AST, but instead of interpreting
the AST itself they first convert it to bytecode. Bytecode is another IR
of the AST and a really dense one at that. The exact format and of
which opcodes (the instructions that make up the bytecode) it’s
composed of varies and depends on the guest and host programming
languages. In general though, the opcodes are pretty similar to the
mnemonics of most assembly languages; it’s a safe bet to say that



most bytecode definitions contain opcodes for push and pop to do
stack operations. But bytecode is not native machine code, nor is it
assembly language. It can’t and won’t be executed by the operating
system and the CPU of the machine the interpreter is running on.
Instead it’s interpreted by a virtual machine, that’s part of the
interpreter. Just like VMWare and VirtualBox emulate real machines
and CPUs, these virtual machines emulate a machine that
understands this particular bytecode format. This approach can yield
great performance benefits.

A variation of this strategy doesn’t involve an AST at all. Instead of
building an AST the parser emits bytecode directly. Now, are we still
talking about interpreters or compilers? Isn’t emitting bytecode that
gets then interpreted (or should we say “executed”?) a form of
compilation? I told you: the line becomes blurry. And to make it even
more fuzzy, consider this: some implementations of programming
languages parse the source code, build an AST and convert this AST
to bytecode. But instead of executing the operations specified by the
bytecode directly in a virtual machine, the virtual machine then
compiles the bytecode to native machine code, right before its
executed - just in time. That’s called a JIT (for “just in time”)
interpreter/compiler.

Others skip the compilation to bytecode. They recursively traverse
the AST but before executing a particular branch of it the node is
compiled to native machine code. And then executed. Again, “just in
time”.

A slight variation of this is a mixed mode of interpretation where the
interpreter recursively evaluates the AST and only after evaluating a
particular branch of the AST multiple times does it compile the branch
to machine code.

Amazing, isn’t it? So many different ways to go about this task of
evaluation, so many twists and variations.



The choice of which strategy to choose largely depends on
performance and portability needs, the programming language that’s
being interpreted and how far you’re willing to go. A tree-walking
interpreter that recursively evaluates an AST is probably the slowest
of all approaches, but easy to build, extend, reason about and as
portable as the language it’s implemented in.

An interpreter that compiles to bytecode and uses a virtual machine
to evaluate said bytecode is going to be a lot faster. But more
complicated and harder to build, too. Throw JIT compilation to
machine code into the mix and now you also need to support multiple
machine architectures if you want the interpreter to work on both
ARM and x86 CPUs.

All of these approaches can be found in real-world programming
languages. And most of the time the chosen approach changed with
the lifetime of the language. Ruby is a great example here. Up to and
including version 1.8 the interpreter was a tree-walking interpreter,
executing the AST while traversing it. But with version 1.9 came the
switch to a virtual machine architecture. Now the Ruby interpreter
parses source code, builds an AST and then compiles this AST into
bytecode, which gets then executed in a virtual machine. The
increase in performance was huge.

The WebKit JavaScript engine JavaScriptCore and its interpreter
named “Squirrelfish” also used AST walking and direct execution as
its approach. Then in 2008 came the switch to a virtual machine and
bytecode interpretation. Nowadays the engine has four (!) different
stages of JIT compilation, which kick in at different times in the
lifetime of the interpreted program – depending on which part of the
program needs the best performance.

Another example is Lua. The main implementation of the Lua
programming language started out as an interpreter that compiles to
bytecode and executes the bytecode in a register-based virtual
machine. 12 years after its first release another implementation of the



language was born: LuaJIT. The clear goal of Mike Pall, the creator of
LuaJIT, was to create the fastest Lua implementation possible. And
he did. By JIT compiling a dense bytecode format to highly-optimized
machine code for different architectures the LuaJIT implementation
beats the original Lua in every benchmark. And not just by a tiny bit,
no; it’s sometimes 50 times faster.

So, a lot of interpreters started out small with room for improvement.
That’s exactly what we’re going to do. There are a lot of ways to build
a faster interpreter, but not necessarily one that’s easier to
understand. We are here to learn, to understand and to be able to
build upon our work.



3.3 - A Tree-Walking Interpreter
What we’re going to build is a tree-walking interpreter. We’re going to
take the AST our parser builds for us and interpret it “on the fly”,
without any preprocessing or compilation step.

Our interpreter will be a lot like a classic Lisp interpreter. The design
we’re going to use is heavily inspired by the interpreter presented in
“The Structure and Interpretation of Computer Programs” (SICP),
especially its usage of environments. That doesn’t mean that we’re
copying one particular interpreter, no, we’re rather using a blueprint
that you can see in lot of other interpreters too, if you squint hard
enough. There are really good reasons for the prevalence of this
particular design: it’s the easiest way to get started, it’s easy to
understand and to extend later on.

We only need two things really: a tree-walking evaluator and a way to
represent Monkey values in our host language Go. Evaluator sounds
mighty and grand, but it will be just one function called “eval”. Its job is
to evaluate the AST. Here is a pseudocode version that illustrates
what “evaluating on the fly” and “tree-walking” mean in the context of
interpretation:

function eval(astNode) {
  if (astNode is integerliteral) {
    return astNode.integerValue

  } else if (astNode is booleanLiteral) {
    return astNode.booleanValue

  } else if (astNode is infixExpression) {

    leftEvaluated = eval(astNode.Left)
    rightEvaluated = eval(astNode.Right)

    if astNode.Operator == "+" {
      return leftEvaluated + rightEvaluated
    } else if ast.Operator == "-" {



As you can see, eval is recursive. When astNode is infixExpression
is true, eval calls itself again two times to evaluate the left and the
right operands of the infix expression. This in turn may lead to the
evaluation of another infix expression or an integer literal or a
boolean literal or an identifier… We’ve already seen recursion at work
when building and testing the AST. The same concepts apply here,
except that we’re evaluating the tree and not building it.

Looking at this snippet of pseudocode you can probably imagine how
easy it is to extend this function. That comes to our advantage. We’re
going to build up our own Eval function piece by piece and add new
branches and capabilities as we go along and extend our interpreter.

But the most interesting lines of this snippet are the return
statements. What do they return? Here are two lines that bind the
return value of a call to eval to names:

What does eval return here? Of which type are the return values? The
answer to these questions is the same as the one for “what kind of
internal object system will our interpreter have?”

      return leftEvaluated - rightEvaluated
    }
  }
}

leftEvaluated = eval(astNode.Left)
rightEvaluated = eval(astNode.Right)



3.4 - Representing Objects
Wait, what? You never said Monkey was object oriented! Yes, I never
did and it’s not. Why do we need “a object system” then? Call it a
“value system” or “object representation” then. The point is, we need
to define what our “eval” function returns. We need a system that can
represent the values our AST represents or values that we generate
when evaluating the AST in memory.

Let’s say we’re evaluating the following Monkey code:

As you can see, we’re binding the integer literal 5 to the name a. Then
things happen. It doesn’t matter what. What matters is that when we
come across the a + a expression later we need to access the value
a is bound to. In order to evaluate a + a we need to get to the 5. In the
AST it’s represented as an *ast.IntegerLiteral, but how are we
going to keep track of and represent the 5 while we’re evaluating the
rest of the AST?

There are a lot of different choices when building an internal
representation of values in an interpreted language. And there is a lot
of wisdom about this topic spread throughout the codebases of the
world’s interpreters and compilers. Each interpreter has its own way
to represent values, always slightly differing from the solution that
came before, adjusted for the requirements of the interpreted
language.

Some use native types (integers, booleans, etc.) of the host language
to represent values in the interpreted language, not wrapped in
anything. In other languages values/objects are represented only as
pointers, whereas in some programming languages native types and
pointers are mixed.

let a = 5;
// [...]
a + a;



Why the variety? For one, the host languages differ. How you
represent a string of your interpreted language depends on how a
string can be represented in the language the interpreter is
implemented in. An interpreter written in Ruby can’t represent values
the same way an interpreter written in C can.

And not only do the host languages differ, but the languages being
interpreted do too. Some interpreted languages may only need
representations of primitive data types, like integers, characters or
bytes. But in others you’ll have lists, dictionaries, functions or
compound data types. These differences lead to highly different
requirements in regards to value representation.

Besides the host language and the interpreted language, the biggest
influence on the design and implementation of value representations
is the resulting execution speed and the memory consumption while
evaluating programs. If you want to build a fast interpreter you can’t
get away with a slow and bloated object system. And if you’re going
to write your own garbage collector, you need to think about how it’ll
keep track of the values in the system. But, on the other hand, if you
don’t care about performance, then it does make sense to keep
things simple and easy to understand until further requirements arise.

The point is this: there are a lot of different ways to represent values
of the interpreted languages in the host language. The best (and
maybe the only) way to learn about these different representations is
to actually read through the source code of some popular
interpreters. I heartily recommended the Wren source code, which
includes two types of value representation, enabled/disabled by using
a compiler flag.

Besides the representation of values inside the host language there
is also the matter of how to expose these values and their
representation to the user of the interpreted language. What does the
“public API” of these values look like?

https://github.com/munificent/wren


Java, for example, offers both “primitive data types” (int, byte, short,
long, float, double, boolean, char) and reference types to the user.
The primitive data types do not have a huge representation inside the
Java implementation, they closely map to their native counterparts.
Reference types on the other hand are references to compound data
structures defined in the host language.

In Ruby the user doesn’t have access to “primitive data types”,
nothing like a native value type exists because everything is an object
and thus wrapped inside an internal representation. Internally Ruby
doesn’t distinguish between a byte and an instance of the class
Pizza: both are the same value type, wrapping different values.

There are a myriad ways to expose data to users of programming
languages. Which one to choose depends on the language design
and also, again, on performance requirements. If you don’t care
about performance everything goes. But if you do, you need to make
some smart decisions to achieve your goals.

Foundation of our Object System

Carefree as we still are about the performance of our Monkey
interpreter, we choose the easy way: we’re going to represent every
value we encounter when evaluating Monkey source code as an
Object, an interface of our design. Every value will be wrapped inside
a struct, which fulfills this Object interface.

In a new object package we define the Object interface and the
ObjectType type:

// object/object.go

package object

type ObjectType string

type Object interface {
    Type() ObjectType



That’s pretty simple and looks a lot like what we did in the token
package with the Token and TokenType types. Except that instead of
being a struct like Token the Object type is an interface. The reason is
that every value needs a different internal representation and it’s
easier to define two different struct types than trying to fit booleans
and integers into the same struct field.

At the moment we only have three data types in our Monkey
interpreter: null, booleans and integers. Let’s start with implementing
the integer representation and build up our object system.

Integers

The object.Integer type is as small as you’d expect it to be:

Whenever we encounter an integer literal in the source code we first
turn it into an ast.IntegerLiteral and then, when evaluating that
AST node, we turn it into an object.Integer, saving the value inside
our struct and passing around a reference to this struct.

In order for object.Integer to fulfill the object.Object interface, it still
needs a Type() method that returns its ObjectType. Just like we did
with token.TokenType we define constants for each ObjectType:

    Inspect() string
}

// object/object.go

import "fmt"

type Integer struct {
    Value int64
}

func (i *Integer) Inspect() string { return fmt.Sprintf("%d", i.Value) }

// object/object.go



As I said, this is pretty much what we did in the token package. And
with that in place we can add the Type() method to *object.Integer:

And we’re done with Integer! Onto another data type: booleans.

Booleans

If you were expecting big things of this section, I’m sorry to
disappoint. object.Boolean is as tiny as it gets:

Just a struct that wraps a single value, a bool.

We’re close to finishing the foundation of our object system. The last
thing we need to do now, before we can start with our Eval function, is
to represent a value that isn’t there.

import "fmt"

type ObjectType string

const (
    INTEGER_OBJ = "INTEGER"
)

// object/object.go

func (i *Integer) Type() ObjectType { return INTEGER_OBJ }

// object/object.go

const (
// [...]
    BOOLEAN_OBJ = "BOOLEAN"
)

type Boolean struct {
    Value bool
}

func (b *Boolean) Type() ObjectType { return BOOLEAN_OBJ }
func (b *Boolean) Inspect() string  { return fmt.Sprintf("%t", b.Value) }



Null

Tony Hoare introduced null references to the ALGOL W language in
1965 and called this his “billion-dollar mistake”. Since their
introduction countless systems have crashed because of references
to “null”, a value that represents the absence of a value. Null (or “nil”
as in some languages) doesn’t have the best reputation, to say the
least.

I debated with myself whether Monkey should have null. On one
hand, yes, the language would be safer to use if it doesn’t allow null
or null references. But on the other, we’re not trying to reinvent the
wheel, but to learn something. And I found that having null at my
disposal lead me to think twice whenever there was a chance to use
it. Kinda like having something explosive in your car leads you to
driving slower and more carefully. It really made me appreciate the
choices that go into the design of a programming language. That’s
something I consider worthwhile. So let’s implement the Null type
and keep a close look and steady hand when using it later on.

object.Null is a struct just like object.Boolean and object.Integer,
except that it doesn’t wrap any value. It represents the absence of
any value.

With object.Null added, our object system is now capable of
representing boolean, integer and null values. That’s more than

// object/object.go

const (
// [...]
    NULL_OBJ  = "NULL"
)

type Null struct{}

func (n *Null) Type() ObjectType { return NULL_OBJ }
func (n *Null) Inspect() string  { return "null" }

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare


enough to get started with Eval.



3.5 - Evaluating Expressions
Alright, here we go. Let’s start writing Eval! We have our AST and we
have a new object system, that allows us to keep track of values we
encounter when executing Monkey source code. It’s time to finally
evaluate the AST.

Here is what the signature of Eval will look like in its first version:

Eval will take an ast.Node as input and return an object.Object.
Remember that every node we defined in the ast package fulfills the
ast.Node interface and can thus be passed to Eval. This allows us to
use Eval recursively and call itself while evaluating a part of the AST.
Each AST node needs a different form of evaluation and Eval is the
place where we decide what these forms look like. As an example,
let’s say that we pass an *ast.Program node to Eval. What Eval
should do then is to evaluate each of *ast.Program.Statements by
calling itself with a single statement. The return value of the outer call
to Eval is the return value of the last call.

We’re going to start by implementing self-evaluating expressions.
That’s what we call literals in the land of Eval. Specifically, boolean
and integer literals. They are the constructs in Monkey that are
easiest to evaluate, because they evaluate to themselves. If I type 5
into my REPL then 5 is also what should come out. And if I type in
true then true is what I want.

Sounds easy enough? It is! So, let’s turn “type in 5, get back 5” into
reality.

Integer Literals

func Eval(node ast.Node) object.Object



Before writing any code though, what does this mean exactly? We’re
given a single expression statement as input, which only contains an
integer literal, and want to evaluate it so that the integer itself is
returned.

Translated into the language of our system, it means that, given an
*ast.IntegerLiteral, our Eval function should return an
*object.Integer whose Value field contains the same integer as
*ast.IntegerLiteral.Value.

We can easily write a test for this in our new evaluator package:

// evaluator/evaluator_test.go

package evaluator

import (
    "monkey/lexer"
    "monkey/object"
    "monkey/parser"
    "testing"
)

func TestEvalIntegerExpression(t *testing.T) {
    tests := []struct {
        input    string
        expected int64
    }{
        {"5", 5},
        {"10", 10},
    }

    for _, tt := range tests {
        evaluated := testEval(tt.input)
        testIntegerObject(t, evaluated, tt.expected)
    }
}

func testEval(input string) object.Object {
    l := lexer.New(input)
    p := parser.New(l)
    program := p.ParseProgram()



That’s a lot of code for such a small test, isn’t it? As with our parser
tests, we’re building up our testing infrastructure here. The
TestEvalIntegerExpression test will need to grow and its current
structure makes this really easy. The testEval and
testIntegerObject will also find a lot of use.

The heart of the test is the call to Eval inside testEval. We take our
input, pass it to the lexer, pass the lexer to the parser and get back an
AST. And then, this is new, we pass the AST to Eval. The return value
of Eval is what we make assertions about. In this case, we want the
return value to be an *object.Integer with the correct .Value. In other
words: we want 5 to evaluate to 5.

Of course, the test fails because we haven’t defined Eval yet. But we
already know that Eval should take an ast.Node as argument and
return an object.Object. And whenever it encounters an
*ast.IntegerLiteral it should return an *object.Integer with the
correct .Value. Turning this into code and defining our new Eval with
this behaviour in the evaluator package, we get this:

    return Eval(program)
}

func testIntegerObject(t *testing.T, obj object.Object, expected int64) bool {
    result, ok := obj.(*object.Integer)
    if !ok {
        t.Errorf("object is not Integer. got=%T (%+v)", obj, obj)
        return false
    }
    if result.Value != expected {
        t.Errorf("object has wrong value. got=%d, want=%d",
            result.Value, expected)
        return false
    }

    return true
}



Nothing surprising here, it does just what we said it should. Except
that it doesn’t work. The test still fails because Eval returns nil
instead of an *object.Integer.

The reason for this failure is that we never encounter an
*ast.IntegerLiteral in Eval. We don’t traverse the AST. We should
always start at the top of the tree, receiving an *ast.Program, and
then traverse every node in it. And that’s exactly what we’re not doing
here. We’re just waiting for an *ast.IntegerLiteral. The fix is to
actually traverse the tree and evaluate every statement of the
*ast.Program:

// evaluator/evaluator.go

package evaluator

import (
    "monkey/ast"
    "monkey/object"
)

func Eval(node ast.Node) object.Object {
    switch node := node.(type) {
    case *ast.IntegerLiteral:
        return &object.Integer{Value: node.Value}
    }

    return nil
}

$ go test ./evaluator
--- FAIL: TestEvalIntegerExpression (0.00s)
  evaluator_test.go:36: object is not Integer. got=<nil> (<nil>)
  evaluator_test.go:36: object is not Integer. got=<nil> (<nil>)
FAIL
FAIL    monkey/evaluator        0.006s

// evaluator/evaluator.go

func Eval(node ast.Node) object.Object {
    switch node := node.(type) {



With these changes we evaluate every statement in a Monkey
program. And if the statement is an *ast.ExpressionStatement we
evaluate its expression. That mirrors the AST structure we get from a
one line input like 5: a program that consists of one statement, an
expression statement (not a return statement and not a let statement)
with an integer literal as its expression.

Alright, the tests pass! We can evaluate integer literals! Hey
everyone, if we type in a number, a number comes out and it only
took us a couple thousand lines of code and tests to do so! Okay,
granted, it doesn’t look like much. But it’s a start. We’re beginning to
see how evaluation works and how we can extend our evaluator. The
structure of Eval won’t change, we’ll only add to and extend it.

    // Statements
    case *ast.Program:
        return evalStatements(node.Statements)

    case *ast.ExpressionStatement:
        return Eval(node.Expression)

    // Expressions
    case *ast.IntegerLiteral:
        return &object.Integer{Value: node.Value}
    }

    return nil
}

func evalStatements(stmts []ast.Statement) object.Object {
    var result object.Object

    for _, statement := range stmts {
        result = Eval(statement)
    }

    return result
}

$ go test ./evaluator
ok      monkey/evaluator        0.006s



Next up on our list of self-evaluating expressions are boolean literals.
But before we do that, we should celebrate our first evaluation
success and treat ourselves. Let’s put the E in REPL!

Completing the REPL

Up until now the E in in our REPL was missing and we had nothing
but a RPPL - a Read-Parse-Print-Loop. Now that we have Eval we
can build a real Read-Evaluate-Print-Loop!

Using the evaluator in the repl package is as easy as you’d think it is:

// repl/repl.go

import (
// [...]
    "monkey/evaluator"
)

// [...]

func Start(in io.Reader, out io.Writer) {
    scanner := bufio.NewScanner(in)

    for {
        fmt.Fprintf(out, PROMPT)
        scanned := scanner.Scan()
        if !scanned {
            return
        }

        line := scanner.Text()
        l := lexer.New(line)
        p := parser.New(l)

        program := p.ParseProgram()
        if len(p.Errors()) != 0 {
            printParserErrors(out, p.Errors())
            continue
        }

        evaluated := evaluator.Eval(program)



Instead of printing program (the AST returned by the parser) we pass
program to Eval. If Eval returns a non-nil value, an object.Object, we
print the output of its Inspect() method. In the case of an
*object.Integer that would be the string representation of the integer
it’s wrapping.

And with that we now have a working REPL:

Feels good, doesn’t it? Lexing, parsing, evaluating - it’s all in there.
We’ve come a long way.

Boolean Literals

Boolean literals, just like their integer counterparts, evaluate to
themselves. true evaluates to true and false to false. Implementing
this in Eval is as easy as adding support for integer literals was. The
tests are equally boring:

        if evaluated != nil {
            io.WriteString(out, evaluated.Inspect())
            io.WriteString(out, "\n")
        }
    }
}

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> 5
5
>> 10
10
>> 999
999
>>

// evaluator/evaluator_test.go

func TestEvalBooleanExpression(t *testing.T) {
    tests := []struct {
        input    string



We’ll extend the tests slice as soon as we support more expressions
that result in booleans. For now, we only make sure that we get the
correct output when we enter true or false. The tests fail:

Making this green is as easy as copying the case branch from
*ast.IntegerLiteral and changing two identifiers:

        expected bool
    }{
        {"true", true},
        {"false", false},
    }

    for _, tt := range tests {
        evaluated := testEval(tt.input)
        testBooleanObject(t, evaluated, tt.expected)
    }
}

func testBooleanObject(t *testing.T, obj object.Object, expected bool) bool {
    result, ok := obj.(*object.Boolean)
    if !ok {
        t.Errorf("object is not Boolean. got=%T (%+v)", obj, obj)
        return false
    }
    if result.Value != expected {
        t.Errorf("object has wrong value. got=%t, want=%t",
            result.Value, expected)
        return false
    }
    return true
}

$ go test ./evaluator
--- FAIL: TestEvalBooleanExpression (0.00s)
  evaluator_test.go:42: object is not Boolean. got=<nil> (<nil>)
  evaluator_test.go:42: object is not Boolean. got=<nil> (<nil>)
FAIL
FAIL    monkey/evaluator        0.006s

// evaluator/evaluator.go

func Eval(node ast.Node) object.Object {



That’s it! Let’s give it a spin in the REPL:

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> true
true
>> false
false
>>

Pretty! But, let me ask you this: the fact that we’re creating a new
object.Boolean every time we encounter a true or false is absurd,
isn’t it? There is no difference between two trues. The same goes for
false. Why use new instances every time? There are only two
possible values, so let’s reference them instead of creating new ones.

// [...]
    case *ast.Boolean:
        return &object.Boolean{Value: node.Value}
// [...]
}

// evaluator/evaluator.go

var (
    TRUE  = &object.Boolean{Value: true}
    FALSE = &object.Boolean{Value: false}
)

func Eval(node ast.Node) object.Object {
// [...]
    case *ast.Boolean:
        return nativeBoolToBooleanObject(node.Value)
// [...]
}

func nativeBoolToBooleanObject(input bool) *object.Boolean {
    if input {
        return TRUE
    }
    return FALSE
}



Now there are only two instances of object.Boolean in our package:
TRUE and FALSE and we reference them instead of allocating new
object.Booleans. That makes much more sense and is a small
performance improvement we get without a lot of work. And while
we’re at it, let’s take care of null, too.

Null

Just as there is only one true and one false, there should only be
one reference to a null value. There are no variations of null. No
kinda-but-not-quite-null, no half-null and no basically-the-same-as-
the-other-null. Either something is this one null, or it isn’t. So let’s
create one NULL we can reference throughout our evaluator instead of
creating new object.Nulls.

And that’s all there is to it. Now we have one NULL we can reference.

With integer literals and our trio of NULL, TRUE and FALSE in place we’re
ready to evaluate operator expressions.

Prefix Expressions

The simplest form of operator expressions Monkey supports is the
prefix expression, or unary operator expression, where one operand
follows the operator. In our parser we treated a lot of language
constructs like prefix expressions, because that’s the easiest way to
parse them. But in this section prefix expressions are just operator
expressions with one operator and one operand. Monkey supports
two of these prefix operators: ! and -.

// evaluator/evaluator.go

var (
    NULL  = &object.Null{}
    TRUE  = &object.Boolean{Value: true}
    FALSE = &object.Boolean{Value: false}
)



Evaluating operator expressions (especially with a prefix operator
and one operand) isn’t hard. We’ll do it in small steps and build up the
desired behaviour bit by bit. But we also need to pay close attention.
What we’re about to implement has far reaching consequences.
Remember: in the evaluation process the input language receives
meaning; we’re defining the semantics of the Monkey programming
language. A small change in the evaluation of operator expressions
might cause something unintended in a part of the language that
seems entirely unrelated. Tests help us to nail down the desired
behaviour and also act as a specification for us.

We’re going to start by implementing support for the ! operator. The
tests show that the operator should “convert” its operand to a boolean
value and negate it:

As I said, this is where we decide how the language works. The !true
and !false expressions and their expected results seem like
common sense, but the !5 may be something where other language

// evaluator/evaluator_test.go

func TestBangOperator(t *testing.T) {
    tests := []struct {
        input    string
        expected bool
    }{
        {"!true", false},
        {"!false", true},
        {"!5", false},
        {"!!true", true},
        {"!!false", false},
        {"!!5", true},
    }

    for _, tt := range tests {
        evaluated := testEval(tt.input)
        testBooleanObject(t, evaluated, tt.expected)
    }
}



designers feel an error should be returned. But what we’re saying
here is that 5 acts as “truthy”.

The tests don’t pass, of course, because Eval returns nil instead of
TRUE or FALSE. The first step to evaluating a prefix expression is to
evaluate its operand and then use the result of this evaluation with
the operator:

After the first call to Eval here, right may be an *object.Integer or
an *object.Boolean or maybe even NULL. We then take this right
operand and pass it to evalPrefixExpression which checks if the
operator is supported:

If the operator is not supported we return NULL. Is that the best
choice? Maybe, maybe not. For now, it’s definitely the easiest choice,
since we don’t have any error handling implemented yet.

The evalBangOperatorExpression function is where the behaviour of
the ! is specified:

// evaluator/evaluator.go

func Eval(node ast.Node) object.Object {
// [...]
    case *ast.PrefixExpression:
        right := Eval(node.Right)
        return evalPrefixExpression(node.Operator, right)
// [...]
}

// evaluator/evaluator.go

func evalPrefixExpression(operator string, right object.Object) object.Object {
    switch operator {
    case "!":
        return evalBangOperatorExpression(right)
    default:
        return NULL
    }
}



And with that the tests pass!

Let’s move on to the - prefix operator. We can extend our
TestEvalIntegerExpression test function to incorporate it:

I choose to extend this test rather than writing a new test function
solely for the - prefix operator for two reasons. First, integers are the
only supported operands of the - operator in prefix position. And
second, because this test function should grow to encompass all

// evaluator/evaluator.go

func evalBangOperatorExpression(right object.Object) object.Object {
    switch right {
    case TRUE:
        return FALSE
    case FALSE:
        return TRUE
    case NULL:
        return TRUE
    default:
        return FALSE
    }
}

$ go test ./evaluator
ok      monkey/evaluator        0.007s

// evaluator/evaluator_test.go

func TestEvalIntegerExpression(t *testing.T) {
    tests := []struct {
        input    string
        expected int64
    }{
        {"5", 5},
        {"10", 10},
        {"-5", -5},
        {"-10", -10},
    }
// [...]
}



integer arithmetic in order to have one place that shows the desired
behaviour in a clear and neat way.

We have to extend the evalPrefixExpression function we wrote
earlier in order to make the test cases pass. A new branch in the
switch statement is needed:

The evalMinusPrefixOperatorExpression function looks like this:

The first thing we do here is to check if the operand is an integer. If it
isn’t, we return NULL. But if it is, we extract the value of the
*object.Integer. Then we allocate a new object to wrap a negated
version of this value.

That wasn’t a lot of code, was it? But still, it did the job:

// evaluator/evaluator.go

func evalPrefixExpression(operator string, right object.Object) object.Object {
    switch operator {
    case "!":
        return evalBangOperatorExpression(right)
    case "-":
        return evalMinusPrefixOperatorExpression(right)
    default:
        return NULL
    }
}

// evaluator/evaluator.go

func evalMinusPrefixOperatorExpression(right object.Object) object.Object {
    if right.Type() != object.INTEGER_OBJ {
        return NULL
    }

    value := right.(*object.Integer).Value
    return &object.Integer{Value: -value}
}



Excellent! Now we can give our prefix expressions a spin in the REPL
before moving on to their infix friends:

Amazing!

Infix Expressions

As a refresher, here are the eight infix operators that Monkey
supports:

These eight operators can be separated into two groups: one group
of operators produces booleans as their result and one group
doesn’t. We’ll start by implementing support for the second group: +,

$ go test ./evaluator
ok      monkey/evaluator        0.007s

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> -5
-5
>> !true
false
>> !-5
false
>> !!-5
true
>> !!!!-5
true
>> -true
null

5 + 5;
5 - 5;
5 * 5;
5 / 5;

5 > 5;
5 < 5;
5 == 5;
5 != 5;



-, *, /. And first only in combination with integer operands. As soon as
that works, we’ll add support for booleans on either side of the
operator.

The test infrastructure is already in place. We’ll just extend our
TestEvalIntegerExpression test function with test cases for these
new operators:

Yes, there are probably some test cases that can be removed
because they duplicate another one and some add nothing new, but
to be honest: I was really trigger happy with these tests once I
realized that the implementation works and I just couldn’t believe it. “It
can’t be that easy, can it?” Well, yes, it can.

// evaluator/evaluator_test.go

func TestEvalIntegerExpression(t *testing.T) {
    tests := []struct {
        input    string
        expected int64
    }{
        {"5", 5},
        {"10", 10},
        {"-5", -5},
        {"-10", -10},
        {"5 + 5 + 5 + 5 - 10", 10},
        {"2 * 2 * 2 * 2 * 2", 32},
        {"-50 + 100 + -50", 0},
        {"5 * 2 + 10", 20},
        {"5 + 2 * 10", 25},
        {"20 + 2 * -10", 0},
        {"50 / 2 * 2 + 10", 60},
        {"2 * (5 + 10)", 30},
        {"3 * 3 * 3 + 10", 37},
        {"3 * (3 * 3) + 10", 37},
        {"(5 + 10 * 2 + 15 / 3) * 2 + -10", 50},
    }
// [...]
}



To get these test cases to pass, the first thing we need to do is to
extend our switch statement in Eval:

Just as with *ast.PrefixExpression we evaluate the operands first.
And now we have two: the left and the right arm of the AST node. We
already know that these may be any other expression - a function
call, an integer literal, an operator expression, etc. We don’t care. We
let Eval take care of it.

After evaluating the operands we take the returned values and the
operator and pass them to evalIntegerInfixExpressions, which looks
like this:

In case the operands aren’t both integers we return NULL, just as I
promised. Of course, we’ll extend this function later on, but in order to
get the tests to pass, this is enough. The heart of the matter lies in

// evaluator/evaluator.go

func Eval(node ast.Node) object.Object {
// [...]
    case *ast.InfixExpression:
        left := Eval(node.Left)
        right := Eval(node.Right)
        return evalInfixExpression(node.Operator, left, right)
// [...]
}

// evaluator/evaluator.go

func evalInfixExpression(
    operator string,
    left, right object.Object,
) object.Object {
    switch {
    case left.Type() == object.INTEGER_OBJ && right.Type() == object.INTEGER_OBJ:
        return evalIntegerInfixExpression(operator, left, right)
    default:
        return NULL
    }
}



evalIntegerInfixExpression, where the values wrapped by
*object.Integers are added, subtracted, multiplied and divided:

And now, believe it or not, the tests pass. Yes, really, they do:

Go on, add a few more. Knock yourself out. And then come back here
so we can add support for the operators that result in booleans: ==,
!=, < and >.

We can extend our TestEvalBooleanExpression test function with test
cases for these operators, since they all produce a boolean:

// evaluator/evaluator.go

func evalIntegerInfixExpression(
    operator string,
    left, right object.Object,
) object.Object {
    leftVal := left.(*object.Integer).Value
    rightVal := right.(*object.Integer).Value

    switch operator {
    case "+":
        return &object.Integer{Value: leftVal + rightVal}
    case "-":
        return &object.Integer{Value: leftVal - rightVal}
    case "*":
        return &object.Integer{Value: leftVal * rightVal}
    case "/":
        return &object.Integer{Value: leftVal / rightVal}
    default:
        return NULL
    }
}

$ go test ./evaluator
ok      monkey/evaluator        0.007s

// evaluator/evaluator_test.go

func TestEvalBooleanExpression(t *testing.T) {
    tests := []struct {



A few added lines in evalIntegerInfixExpression is all that’s needed
to get these tests to pass:

        input    string
        expected bool
    }{
        {"true", true},
        {"false", false},
        {"1 < 2", true},
        {"1 > 2", false},
        {"1 < 1", false},
        {"1 > 1", false},
        {"1 == 1", true},
        {"1 != 1", false},
        {"1 == 2", false},
        {"1 != 2", true},
    }
// [...]
}

// evaluator/evaluator.go

func evalIntegerInfixExpression(
    operator string,
    left, right object.Object,
) object.Object {
    leftVal := left.(*object.Integer).Value
    rightVal := right.(*object.Integer).Value

    switch operator {
// [...]
    case "<":
        return nativeBoolToBooleanObject(leftVal < rightVal)
    case ">":
        return nativeBoolToBooleanObject(leftVal > rightVal)
    case "==":
        return nativeBoolToBooleanObject(leftVal == rightVal)
    case "!=":
        return nativeBoolToBooleanObject(leftVal != rightVal)
    default:
        return NULL
    }
}



The nativeBoolToBooleanObject function we already used for boolean
literals now finds some reuse when we need to return either TRUE or
FALSE based on the comparison between the unwrapped values.

And that’s it! Well, at least for integers. We now fully support the eight
infix operators when both operands are integers. What’s left in this
section is adding support for boolean operands.

Monkey only supports boolean operands for the equality operators ==
and !=. It doesn’t support adding, subtracting, dividing and multiplying
booleans. Checking whether true is greater than false with < or > is
also unsupported. That reduces our task to just adding support for
two operators.

The first thing we have to do, as you know, is to add tests. And, as
before, we can extend an existing test function. In this case, we’ll use
TestEvalBooleanExpression and add test cases for the == and !=
operators:

// evaluator/evaluator_test.go

func TestEvalBooleanExpression(t *testing.T) {
    tests := []struct {
        input    string
        expected bool
    }{
// [...]
        {"true == true", true},
        {"false == false", true},
        {"true == false", false},
        {"true != false", true},
        {"false != true", true},
        {"(1 < 2) == true", true},
        {"(1 < 2) == false", false},
        {"(1 > 2) == true", false},
        {"(1 > 2) == false", true},
    }
// [...]
}



Strictly speaking, only the first five cases are necessary to test the
new and desired behaviour. But let’s throw in the other four too to
check the comparison between generated booleans.

So far, so good. Nothing surprising here. Just another set of of failing
tests:

And here’s something neat to make those tests pass:

Yes, that’s right. We only add four lines to our existing
evalInfixExpression and the tests pass. We’re using pointer

$ go test ./evaluator
--- FAIL: TestEvalBooleanExpression (0.00s)
  evaluator_test.go:121: object is not Boolean. got=*object.Null (&{})
  evaluator_test.go:121: object is not Boolean. got=*object.Null (&{})
  evaluator_test.go:121: object is not Boolean. got=*object.Null (&{})
  evaluator_test.go:121: object is not Boolean. got=*object.Null (&{})
  evaluator_test.go:121: object is not Boolean. got=*object.Null (&{})
  evaluator_test.go:121: object is not Boolean. got=*object.Null (&{})
  evaluator_test.go:121: object is not Boolean. got=*object.Null (&{})
  evaluator_test.go:121: object is not Boolean. got=*object.Null (&{})
  evaluator_test.go:121: object is not Boolean. got=*object.Null (&{})
FAIL
FAIL    monkey/evaluator        0.007s

// evaluator/evaluator.go

func evalInfixExpression(
    operator string,
    left, right object.Object,
) object.Object {
    switch {
// [...]
    case operator == "==":
        return nativeBoolToBooleanObject(left == right)
    case operator == "!=":
        return nativeBoolToBooleanObject(left != right)
    default:
        return NULL
    }
}



comparison here to check for equality between booleans. That works
because we’re always using pointers to our objects and in the case of
booleans we only ever use two: TRUE and FALSE. So, if something has
the same value as TRUE (the memory address that is) then it’s true.
This also works with NULL.

This doesn’t work for integers or other data types we might add later
on. In the case of *object.Integer we’re always allocating new
instances of object.Integer and thus use new pointers. We can’t
compare these pointers to different instances, otherwise 5 == 5
would be false, which is not what we want. In this case we want to
explicitly compare the values and not the objects that wrap these
values.

That’s why the check for integer operands has to be higher up in the
switch statement and match earlier than these newly added case
branches. As long as we’re taking care of other operand types before
arriving at these pointer comparisons we’re fine and it works.

In ten years, when Monkey is a famous programming language and
the discussion about research-ignoring dilettantes designing
programming languages is still ongoing and we’re both rich and
famous, someone will ask on StackOverflow why integer comparison
in Monkey is slower than boolean comparison. The answer will be
written by either you or me and one of us will say that Monkey’s
object system doesn’t allow pointer comparison for integer objects. It
has to unwrap the value before a comparison can be made. Thus the
comparison between booleans is faster. We’ll add a “Source: I wrote
it.” to the bottom of our answer and earn an unheard of amount of
karma.

But I digress. To get back to topic, let me just say: Wow! We did it! I
know, I’m pretty lavish with my praise and can spot a cause for
celebration pretty easily, but if there ever was a time to pop the
champagne, it’s now. Yes, we did it. Just look at what our interpreter
can do now:



So, now we have a fully functional calculator that’s ready to do more.
Let’s give him more. Let’s make it look more like a programming
language.

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> 5 * 5 + 10
35
>> 3 + 4 * 5 == 3 * 1 + 4 * 5
true
>> 5 * 10 > 40 + 5
true
>> (10 + 2) * 30 == 300 + 20 * 3
true
>> (5 > 5 == true) != false
false
>> 500 / 2 != 250
false



3.6 - Conditionals
You’ll be amazed how easy it is to add support for conditionals in our
evaluator. The only hard thing about their implementation is deciding
when to evaluate what. Because that’s the whole point of
conditionals: only ever evaluate something based on a condition.
Consider this:

When evaluating this if-else-expression the important thing is to only
evaluate the correct branch. If the condition is met, we must never
evaluate the else-branch, only the if-branch. And if it isn’t met we
must only evaluate the else-branch.

In other words: we can only evaluate the else-branch of this
conditional if the condition x > 10 is not … well, when it’s not what
exactly? Should we evaluate the consequence, the "everything
okay!" branch, only when the condition expression generates a true
or when it generates something “truthy”, something that’s not false or
not null?

And that’s the tough part about this, because that’s a design decision,
a language design decision to be exact, with wide ranging
consequences.

In the case of Monkey, the consequence part of the conditional will be
evaluated when the condition is “truthy”. And “truthy” means: it’s not
null and it’s not false. It doesn’t necessarily need to be true.

if (x > 10) {
  puts("everything okay!");
} else {
  puts("x is too low!");
  shutdownSystem();
}

let x = 10;
if (x) {



In this example "everything okay!" should be printed. Why?
Because x is bound to 10, evaluates to 10 and 10 is not null and not
false. That’s how conditionals are supposed to work in Monkey.

Now that we’ve talked about this, we can turn this specification into a
set of test cases:

  puts("everything okay!");
} else {
  puts("x is too high!");
  shutdownSystem();
}

// evaluator/evaluator_test.go

func TestIfElseExpressions(t *testing.T) {
    tests := []struct {
        input    string
        expected interface{}
    }{
        {"if (true) { 10 }", 10},
        {"if (false) { 10 }", nil},
        {"if (1) { 10 }", 10},
        {"if (1 < 2) { 10 }", 10},
        {"if (1 > 2) { 10 }", nil},
        {"if (1 > 2) { 10 } else { 20 }", 20},
        {"if (1 < 2) { 10 } else { 20 }", 10},
    }

    for _, tt := range tests {
        evaluated := testEval(tt.input)
        integer, ok := tt.expected.(int)
        if ok {
            testIntegerObject(t, evaluated, int64(integer))
        } else {
            testNullObject(t, evaluated)
        }
    }
}

func testNullObject(t *testing.T, obj object.Object) bool {
    if obj != NULL {
        t.Errorf("object is not NULL. got=%T (%+v)", obj, obj)



This test function also specifies behaviour we haven’t talked about
yet. When a conditional doesn’t evaluate to a value it’s supposed to
return NULL, e.g.:

The else is missing and thus the conditional should produce NULL.

We have to do a little type assertion and conversion dance to allow
nil in our expected field, granted, but the tests are readable and
clearly show the desired and hereby specified behaviour. They also
fail, because we don’t return any *object.Integers or NULL:

Earlier I told you that you’ll be amazed at how easy it is to implement
support for conditionals. Didn’t believe me? Well, look at this small
amount of code necessary to make the tests pass:

        return false
    }
    return true
}

if (false) { 10 }

$ go test ./evaluator
--- FAIL: TestIfElseExpressions (0.00s)
  evaluator_test.go:125: object is not Integer. got=<nil> (<nil>)
  evaluator_test.go:153: object is not NULL. got=<nil> (<nil>)
  evaluator_test.go:125: object is not Integer. got=<nil> (<nil>)
  evaluator_test.go:125: object is not Integer. got=<nil> (<nil>)
  evaluator_test.go:153: object is not NULL. got=<nil> (<nil>)
  evaluator_test.go:125: object is not Integer. got=<nil> (<nil>)
  evaluator_test.go:125: object is not Integer. got=<nil> (<nil>)
FAIL
FAIL    monkey/evaluator        0.007s

// evaluator/evaluator.go

func Eval(node ast.Node) object.Object {
// [...]
    case *ast.BlockStatement:
        return evalStatements(node.Statements)



As I said: the only hard thing is deciding what to evaluate. And that
decision is encapsulated in evalIfExpression where the logic of the
behaviour is pretty clear. isTruthy is equally expressive. Besides
these two functions we also added the case branch for
*ast.BlockStatement to our Eval switch statement, because the
.Consequence and .Alternative of *ast.IfExpression are both block
statements.

We added two new and concise functions that show the semantics of
the Monkey programming language in a clear way, reused another
function we already had in place and with doing so added support for
conditionals and made the tests pass. Our interpreter now supports

    case *ast.IfExpression:
        return evalIfExpression(node)
// [...]
}

func evalIfExpression(ie *ast.IfExpression) object.Object {
    condition := Eval(ie.Condition)

    if isTruthy(condition) {
        return Eval(ie.Consequence)
    } else if ie.Alternative != nil {
        return Eval(ie.Alternative)
    } else {
        return NULL
    }
}

func isTruthy(obj object.Object) bool {
    switch obj {
    case NULL:
        return false
    case TRUE:
        return true
    case FALSE:
        return false
    default:
        return true
    }
}



if-else-expressions! We’re now leaving calculator territory and
heading straight towards programming language land:

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> if (5 * 5 + 10 > 34) { 99 } else { 100 }
99
>> if ((1000 / 2) + 250 * 2 == 1000) { 9999 }
9999
>>



3.7 - Return Statements
Now here’s something that you won’t find on your standard
calculator: return statements. Monkey has them, like a lot of other
languages. They can be used in the bodies of functions but also as
top-level statements in a Monkey program. But it doesn’t really matter
where they’re used, because how they work doesn’t change: return
statements stop the evaluation of a series of statements and leave
behind the value their expression has evaluated to.

Here is a top-level return statement in a Monkey program:

When evaluated this program should return 10. If these statements
were the body of a function, calling the function should evaluate to 10.
The important thing is that the last line, the 9 * 9 * 9 expression, is
never going to be evaluated.

There are a few different ways to implement return statements. In
some host languages we could use gotos or exceptions. But in Go a
“rescue” or “catch” are not easy to come by and we don’t really have
the option of using gotos in a clean way. That’s why, in order to
support return statements, we’ll be passing a “return value” through
our evaluator. Whenever we encounter a return we’ll wrap the value
it’s supposed to return inside an object, so we can keep track of it.
And we need to keep track of it so we can later decide whether to
stop evaluation or not.

Here is the implementation of said object. Here is
object.ReturnValue:

5 * 5 * 5;
return 10;
9 * 9 * 9;

// object/object.go



Since this is just a wrapper around another object nothing here is
surprising. What’s interesting about object.ReturnValue is when and
how it’s used.

Here are the tests that demonstrate what we expect of the return
statement in the context of a Monkey program:

In order to get these tests to pass we have to change the
evalStatements function we already have and add a case branch for
*ast.ReturnStatement to Eval:

const (
// [...]
    RETURN_VALUE_OBJ = "RETURN_VALUE"
)

type ReturnValue struct {
    Value Object
}

func (rv *ReturnValue) Type() ObjectType { return RETURN_VALUE_OBJ }
func (rv *ReturnValue) Inspect() string  { return rv.Value.Inspect() }

// evaluator/evaluator_test.go

func TestReturnStatements(t *testing.T) {
    tests := []struct {
        input    string
        expected int64
    }{
        {"return 10;", 10},
        {"return 10; 9;", 10},
        {"return 2 * 5; 9;", 10},
        {"9; return 2 * 5; 9;", 10},
    }

    for _, tt := range tests {
        evaluated := testEval(tt.input)
        testIntegerObject(t, evaluated, tt.expected)
    }
}



The first part of this change is the evaluation of *ast.ReturnValue,
where we evaluate the expression associated with the return
statement. We then wrap the result of this call to Eval in our new
object.ReturnValue so we can keep track of it.

In evalStatements, which is used by evalProgramStatements and
evalBlockStatements to evaluate a series of statements, we check if
the last evaluation result is such an object.ReturnValue and if so, we
stop the evaluation and return the unwrapped value. That’s important.
We don’t return an object.ReturnValue, but only the value it’s
wrapping, which is what the user expects to be returned.

There’s a problem, though. Sometimes we have to keep track of
object.ReturnValues for longer and can’t unwrap their values on the
first encounter. That’s the case with block statements. Take a look at
this:

// evaluator/evaluator.go

func Eval(node ast.Node) object.Object {
// [...]
    case *ast.ReturnStatement:
        val := Eval(node.ReturnValue)
        return &object.ReturnValue{Value: val}
// [...]
}

func evalStatements(stmts []ast.Statement) object.Object {
    var result object.Object

    for _, statement := range stmts {
        result = Eval(statement)

        if returnValue, ok := result.(*object.ReturnValue); ok {
            return returnValue.Value
        }
    }

    return result
}



This program should return 10. But with our current implementation, it
doesn’t and returns 1. A small test case confirms this:

This test case fails with the expected message:

if (10 > 1) {
  if (10 > 1) {
    return 10;
  }

  return 1;
}

// evaluator/evaluator_test.go

func TestReturnStatements(t *testing.T) {
    tests := []struct {
        input    string
        expected int64
    }{
// [...]
        {
            `
if (10 > 1) {
  if (10 > 1) {
    return 10;
  }

  return 1;
}
`,
            10,
        },
    }
// [...]
}

$ go test ./evaluator
--- FAIL: TestReturnStatements (0.00s)
  evaluator_test.go:159: object has wrong value. got=1, want=10
FAIL
FAIL    monkey/evaluator        0.007s



I bet that you’ve already figured out what the problem with our current
implementation is. But if you want me to spell it out, here it comes: if
we have nested block statements (which is totally legit in a Monkey
program!) we can’t unwrap the value of object.ReturnValue on first
sight, because we need to further keep track of it so we can stop the
execution in the outermost block statement.

Non-nested block statements work fine with our current
implementation. But to get nested ones to work, the first thing we
have to do is to accept that we can’t reuse our evalStatements
function for evaluating block statements. That’s why we’re going to
rename it to evalProgram and make it less generic.

For evaluating an *ast.BlockStatement we introduce a new function
called evalBlockStatement:

// evaluator/evaluator.go

func Eval(node ast.Node) object.Object {
// [...]
    case *ast.Program:
        return evalProgram(node)
// [...]
}

func evalProgram(program *ast.Program) object.Object {
    var result object.Object

    for _, statement := range program.Statements {
        result = Eval(statement)

        if returnValue, ok := result.(*object.ReturnValue); ok {
            return returnValue.Value
        }
    }

    return result
}

// evaluator/evaluator.go



Here we explicitly don’t unwrap the return value and only check the
Type() of each evaluation result. If it’s object.RETURN_VALUE_OBJ we
simply return the *object.ReturnValue, without unwrapping its .Value,
so it stops execution in a possible outer block statement and bubbles
up to evalProgram, where it finally get’s unwrapped. (That last part will
change when we implement the evaluation of function calls.)

And with that the tests pass:

Return statements are implemented. Now we’re definitely not building
a calculator anymore. And since evalProgram and evalBlockStatement
are still so fresh in our mind let’s keep working on them.

func Eval(node ast.Node) object.Object {
// [...]
    case *ast.BlockStatement:
        return evalBlockStatement(node)
// [...]
}

func evalBlockStatement(block *ast.BlockStatement) object.Object {
    var result object.Object

    for _, statement := range block.Statements {
        result = Eval(statement)

        if result != nil && result.Type() == object.RETURN_VALUE_OBJ {
            return result
        }
    }

    return result
}

$ go test ./evaluator
ok      monkey/evaluator        0.007s



3.8 - Abort! Abort! There’s been a mistake!, or:
Error Handling
Remember all the NULLs we were returning earlier and I said that you
shouldn’t worry and we’ll come back to them? Here we are. It’s time to
implement some real error handling in Monkey before it’s too late and
we’d have to backpedal too much. Granted, we have to backpedal a
little bit and correct previous code, but not much. We didn’t implement
error handling as the first thing in our interpreter, because, and to be
completely honest, I thought implementing expressions first is a lot
more fun than error handling. But we’re now at a point where we need
to add it, otherwise debugging and using our interpreter becomes too
cumbersome in the near future.

First of all, let’s define what I mean with “real error handling”. It is not
user-defined exceptions. It’s internal error handling. Errors for wrong
operators, unsupported operations, and other user or internal errors
that may arise during execution.

As for the implementation of such errors: this will probably sound
weird, but the error handling is implemented in nearly the same way
as handling return statements is. The reason for this similarity is easy
to find: errors and return statements both stop the evaluation of a
series of statements.

The first thing we need is an error object:

// object/object.go

const (
// [...]
    ERROR_OBJ = "ERROR"
)

type Error struct {
    Message string
}



As you can see, object.Error is really, really simple. It only wraps a
string that serves as error message. In a production-ready interpreter
we’d want to attach a stack trace to such error objects, add the line
and column numbers of its origin and provide more than just a
message. That’s not so hard to do, provided that line and column
numbers are attached to the tokens by the lexer. Since our lexer
doesn’t do that, to keep things simple, we only use an error message,
which still serves us a great deal by giving us some feedback and
stopping execution.

We will add support for errors in a few places now. Later, with
increased capability of our interpreter, we’ll add more where
appropriate. For now, this test function shows what we expect the
error handling to do:

func (e *Error) Type() ObjectType { return ERROR_OBJ }
func (e *Error) Inspect() string  { return "ERROR: " + e.Message }

// evaluator/evaluator_test.go

func TestErrorHandling(t *testing.T) {
    tests := []struct {
        input           string
        expectedMessage string
    }{
        {
            "5 + true;",
            "type mismatch: INTEGER + BOOLEAN",
        },
        {
            "5 + true; 5;",
            "type mismatch: INTEGER + BOOLEAN",
        },
        {
            "-true",
            "unknown operator: -BOOLEAN",
        },
        {
            "true + false;",
            "unknown operator: BOOLEAN + BOOLEAN",



When we run the tests we meet our old friend NULL again:

        },
        {
            "5; true + false; 5",
            "unknown operator: BOOLEAN + BOOLEAN",
        },
        {
            "if (10 > 1) { true + false; }",
            "unknown operator: BOOLEAN + BOOLEAN",
        },
        {
            `
if (10 > 1) {
  if (10 > 1) {
    return true + false;
  }

  return 1;
}
`,
            "unknown operator: BOOLEAN + BOOLEAN",
        },
    }

    for _, tt := range tests {
        evaluated := testEval(tt.input)

        errObj, ok := evaluated.(*object.Error)
        if !ok {
            t.Errorf("no error object returned. got=%T(%+v)",
                evaluated, evaluated)
            continue
        }

        if errObj.Message != tt.expectedMessage {
            t.Errorf("wrong error message. expected=%q, got=%q",
                tt.expectedMessage, errObj.Message)
        }
    }
}

$ go test ./evaluator
--- FAIL: TestErrorHandling (0.00s)



But there are also unexpected *object.Integers. That’s because
these test cases actually assert two things: that errors are created for
unsupported operations and that errors prevent any further
evaluation. When the test fails because of an *object.Integer being
returned, the evaluation didn’t stop correctly.

Creating errors and passing them around in Eval is easy. We just
need a helper function to help us create new *object.Errors and
return them when we think we should:

This newError function finds its use in every place where we didn’t
know what to do before and returned NULL instead:

  evaluator_test.go:193: no error object returned. got=*object.Null(&{})
  evaluator_test.go:193: no error object returned.\
    got=*object.Integer(&{Value:5})
  evaluator_test.go:193: no error object returned. got=*object.Null(&{})
  evaluator_test.go:193: no error object returned. got=*object.Null(&{})
  evaluator_test.go:193: no error object returned.\
    got=*object.Integer(&{Value:5})
  evaluator_test.go:193: no error object returned. got=*object.Null(&{})
  evaluator_test.go:193: no error object returned.\
    got=*object.Integer(&{Value:10})
FAIL
FAIL    monkey/evaluator        0.007s

// evaluator/evaluator.go

import (
    // [...]
    "fmt"
)

func newError(format string, a ...interface{}) *object.Error {
    return &object.Error{Message: fmt.Sprintf(format, a...)}
}

// evaluator/evaluator.go

func evalPrefixExpression(operator string, right object.Object) object.Object {
    switch operator {
// [...]



With these changes made the number of failing test cases has been
reduced to just two:

    default:
        return newError("unknown operator: %s%s", operator, right.Type())
    }
}

func evalInfixExpression(
    operator string,
    left, right object.Object,
) object.Object {
    switch {
// [...]
    case left.Type() != right.Type():
        return newError("type mismatch: %s %s %s",
            left.Type(), operator, right.Type())
    default:
        return newError("unknown operator: %s %s %s",
            left.Type(), operator, right.Type())
    }
}

func evalMinusPrefixOperatorExpression(right object.Object) object.Object {
    if right.Type() != object.INTEGER_OBJ {
        return newError("unknown operator: -%s", right.Type())
    }
// [...]
}

func evalIntegerInfixExpression(
    operator string,
    left, right object.Object,
) object.Object {
// [...]
    switch operator {
// [...]
    default:
        return newError("unknown operator: %s %s %s",
            left.Type(), operator, right.Type())
    }
}



That output tells us that creating errors poses no problem but
stopping the evaluation still does. We already know where to look
though, don’t we? Yes, that’s right: evalProgram and
evalBlockStatement. Here are both functions in their entirety, with
newly added support for error handling:

$ go test ./evaluator
--- FAIL: TestErrorHandling (0.00s)
  evaluator_test.go:193: no error object returned.\
    got=*object.Integer(&{Value:5})
  evaluator_test.go:193: no error object returned.\
    got=*object.Integer(&{Value:5})
FAIL
FAIL    monkey/evaluator        0.007s

// evaluator/evaluator.go

func evalProgram(program *ast.Program) object.Object {
    var result object.Object

    for _, statement := range program.Statements {
        result = Eval(statement)

        switch result := result.(type) {
        case *object.ReturnValue:
            return result.Value
        case *object.Error:
            return result
        }
    }

    return result
}

func evalBlockStatement(block *ast.BlockStatement) object.Object {
    var result object.Object

    for _, statement := range block.Statements {
        result = Eval(statement)

        if result != nil {
            rt := result.Type()
            if rt == object.RETURN_VALUE_OBJ || rt == object.ERROR_OBJ {



The added error handling in evalProgram is easy to spot. It takes
slightly more effort to notice the added check for the type of result in
evalBlockStatement.

Taken together, these changes did it. Evaluation is stopped at the
right places and the tests now pass:

There’s still one last thing we need to do. We need to check for errors
whenever we call Eval inside of Eval, in order to stop errors from
being passed around and then bubbling up far away from their origin:

                return result
            }
        }
    }

    return result
}

$ go test ./evaluator
ok      monkey/evaluator        0.010s

// evaluator/evaluator.go

func isError(obj object.Object) bool {
    if obj != nil {
        return obj.Type() == object.ERROR_OBJ
    }
    return false
}

func Eval(node ast.Node) object.Object {
    switch node := node.(type) {

// [...]
    case *ast.ReturnStatement:
        val := Eval(node.ReturnValue)
        if isError(val) {
            return val
        }
        return &object.ReturnValue{Value: val}



And that’s it. Error handling is in place.

// [...]
    case *ast.PrefixExpression:
        right := Eval(node.Right)
        if isError(right) {
            return right
        }
        return evalPrefixExpression(node.Operator, right)

    case *ast.InfixExpression:
        left := Eval(node.Left)
        if isError(left) {
            return left
        }

        right := Eval(node.Right)
        if isError(right) {
            return right
        }

        return evalInfixExpression(node.Operator, left, right)
// [...]
}

func evalIfExpression(ie *ast.IfExpression) object.Object {
    condition := Eval(ie.Condition)
    if isError(condition) {
        return condition
    }
// [...]
}



3.9 - Bindings & The Environment
Up next we’re going to add bindings to our interpreter by adding
support for let statements. But not only do we need to support let
statements, no, we need to support the evaluation of identifiers, too.
Let’s say we have evaluated the following piece of code:

Only adding support for the evaluation of this statement is not
enough. We also need to make sure that the x evaluates to 25 after
interpreting the line above.

So, our task in this section is to evaluate let statements and
identifiers. We evaluate let statements by evaluating their value-
producing expression and keeping track of the produced value under
the specified name. To evaluate identifiers we check if we already
have a value bound to the name. If we do, the identifier evaluates to
this value, and if we don’t, we return an error.

Sounds like a good plan? Alright, so let’s kick this off with a few tests:

let x = 5 * 5;

// evaluator/evaluator_test.go

func TestLetStatements(t *testing.T) {
    tests := []struct {
        input    string
        expected int64
    }{
        {"let a = 5; a;", 5},
        {"let a = 5 * 5; a;", 25},
        {"let a = 5; let b = a; b;", 5},
        {"let a = 5; let b = a; let c = a + b + 5; c;", 15},
    }

    for _, tt := range tests {
        testIntegerObject(t, testEval(tt.input), tt.expected)
    }
}



The test cases assert that these two things should work: evaluating
the value-producing expression in a let statement and evaluating an
identifier that’s bound to a name. But we also need tests to make sure
that we get an error when we try to evaluate an unbound identifier.
And for that we can simply extend our existing TestErrorHandling
function:

How do we make these tests pass? Obviously the first thing we have
to do is add a new case branch for *ast.LetStatement to Eval. And in
this branch we need to Eval the expression of the let statement,
correct? So let’s start with that:

// evaluator/evaluator_test.go

func TestErrorHandling(t *testing.T) {
    tests := []struct {
        input           string
        expectedMessage string
    }{
// [...]
        {
            "foobar",
            "identifier not found: foobar",
        },
    }
// [...]
}

// evaluator/evaluator.go

func Eval(node ast.Node) object.Object {
// [...]
    case *ast.LetStatement:
        val := Eval(node.Value)
        if isError(val) {
            return val
        }

    // Huh? Now what?



The comment is right: now what? How do we keep track of values?
We have the value and we also have the name we should bind it to,
node.Name.Value. How do we associate one with the other?

This is where something called the environment comes into play. The
environment is what we use to keep track of value by associating
them with a name. The name “environment” is a classic one, used in
a lot of other interpreters, especially Lispy ones. But even though the
name may sound sophisticated, at its heart the environment is a hash
map that associates strings with objects. And that’s exactly what
we’re going to use for our implementation.

We’ll add a new Environment struct to the object package. And yes,
for now it really is just a thin wrapper around a map:

// [...]
}

// object/environment.go

package object

func NewEnvironment() *Environment {
    s := make(map[string]Object)
    return &Environment{store: s}
}

type Environment struct {
    store map[string]Object
}

func (e *Environment) Get(name string) (Object, bool) {
    obj, ok := e.store[name]
    return obj, ok
}

func (e *Environment) Set(name string, val Object) Object {
    e.store[name] = val
    return val
}



Let me guess what you’re thinking: Why not use a map? Why the
wrapper? It’ll all make sense as soon as we start implementing
functions and function calls in the next section, I promise. This is the
groundwork we’ll build upon later.

As it is, the usage of object.Environment itself is self-explanatory. But
how do we use it inside Eval? How and where do we keep track of the
environment? We pass it around by making it a parameter of Eval:

With that change nothing compiles anymore, because we have to
change every call to Eval make use of the environment. And not only
the calls to Eval in Eval itself, but also the ones in functions such as
evalProgram, evalIfExpression and so on. This requires more manual
editor work than anything else, so I won’t bore you by showing the list
of changes here.

The calls to Eval in our REPL and in our test suite need to use an
environment too, of course. In the REPL we use a single
environment:

// evaluator/evaluator.go

func Eval(node ast.Node, env *object.Environment) object.Object {
// [...]
}

// repl/repl.go

import (
    // [...]
    "monkey/object"
)

func Start(in io.Reader, out io.Writer) {
    scanner := bufio.NewScanner(in)
    env := object.NewEnvironment()

    for {
// [...]
        evaluated := evaluator.Eval(program, env)



The environment we use here, env, persists between calls to Eval. If it
didn’t, binding a value to a name in the REPL would be without any
effect. As soon as the next line is evaluated, the association wouldn’t
be in the new environment.

That’s exactly what we want in our test suite, though. We don’t want
to keep state around for each test function and each test case. Each
call to testEval should have a fresh environment so we don’t run into
weird bugs involving global state caused by the order in which tests
are run. Every call to Eval here gets a fresh environment:

With updated Eval calls the tests compile again and we can start
making them pass, which is not too hard with *object.Environment
available. In the case branch for *ast.LetStatement we can just use
the name and value we already have and save them in the current
environment:

        if evaluated != nil {
            io.WriteString(out, evaluated.Inspect())
            io.WriteString(out, "\n")
        }
    }
}

// evaluator/evaluator_test.go

func testEval(input string) object.Object {
    l := lexer.New(input)
    p := parser.New(l)
    program := p.ParseProgram()
    env := object.NewEnvironment()

    return Eval(program, env)
}

// evaluator/evaluator.go

func Eval(node ast.Node, env *object.Environment) object.Object {
// [...]
    case *ast.LetStatement:
        val := Eval(node.Value, env)



Now we’re adding associations to the environment when evaluating
let statements. But we also need to get these values out when we’re
evaluating identifiers. Doing that is pretty easy, too:

evalIdentifier will be extended in the next section. For now it simply
checks if a value has been associated with the given name in the
current environment. If that’s the case it returns the value, otherwise
an error.

Look at this:

        if isError(val) {
            return val
        }
        env.Set(node.Name.Value, val)
// [...]
}

// evaluator/evaluator.go

func Eval(node ast.Node, env *object.Environment) object.Object {
// [...]
    case *ast.Identifier:
        return evalIdentifier(node, env)
// [...]
}

func evalIdentifier(
    node *ast.Identifier,
    env *object.Environment,
) object.Object {
    val, ok := env.Get(node.Value)
    if !ok {
        return newError("identifier not found: " + node.Value)
    }

    return val
}

$ go test ./evaluator
ok      monkey/evaluator        0.007s



Yes, you’re right, that’s exactly what this means: we’re now firmly
standing in programming language land.

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> let a = 5;
>> let b = a > 3;
>> let c = a * 99;
>> if (b) { 10 } else { 1 };
10
>> let d = if (c > a) { 99 } else { 100 };
>> d
99
>> d * c * a;
245025



3.10 - Functions & Function Calls
This is what we’ve been working towards. This is the third act. We’re
going to add support for functions and function calls to our interpreter.
When we’re done with this section, we’ll be able to do this in our
REPL:

If that doesn’t impress you then take a look at this. Passing around
functions, higher-order functions and closures will also work:

Yes, that’s right, we will be able to do all of that.

In order to get from where we currently are to there we need to do
two things: define an internal representation of functions in our object
system and add support for function calls to Eval.

>> let add = fn(a, b, c, d) { return a + b + c + d };
>> add(1, 2, 3, 4);
10
>> let addThree = fn(x) { return x + 3 };
>> addThree(3);
6
>> let max = fn(x, y) { if (x > y) { x } else { y } };
>> max(5, 10)
10
>> let factorial = fn(n) { if (n == 0) { 1 } else { n * factorial(n - 1) } };
>> factorial(5)
120

>> let callTwoTimes = fn(x, func) { func(func(x)) };
>> callTwoTimes(3, addThree);
9
>> callTwoTimes(3, fn(x) { x + 1 });
5
>> let newAdder = fn(x) { fn(n) { x + n } };
>> let addTwo = newAdder(2);
>> addTwo(2);
4



But don’t worry. It’s easy. The work we did in the last sections now
pays off. We can reuse and extend a lot of things we already built.
You’ll see that a lot of things just start to fit together at a certain point
in this section.

Since “one step at a time” brought us here there’s no reason to
abandon this strategy now. The first step is to take care of the internal
representation of functions.

The need to represent functions internally comes from the fact that
functions in Monkey are treated like any other value: we can bind
them to names, use them in expressions, pass them to other
functions, return them from functions and so on. And like other
values, functions need a representation in our object system, so we
can pass around, assign and return them.

But how do we represent a function internally, as an object? Our
definition of ast.FunctionLiteral gives us a starting point:

We don’t need the Token field in a function object, but Parameters and
Body make sense. We can’t evaluate a function without its body and
we can’t evaluate the body if we don’t know which parameters the
function has. Besides Parameters and Body we also need a third field
in our new function object:

// ast/ast.go

type FunctionLiteral struct {
    Token      token.Token // The 'fn' token
    Parameters []*Identifier
    Body       *BlockStatement
}

// object/object.go

import (
    "bytes"
    "fmt"
    "monkey/ast"



This definition of object.Function has the Parameters and Body fields.
But it also has Env, a field that holds a pointer to an
object.Environment, because functions in Monkey carry their own
environment with them. That allows for closures, which “close over”
the environment they’re defined in and can later access it. That will
make more sense when we start using the Env field. You’ll see.

With that definition done, we can now write a test to assert that our
interpreter knows how to build functions:

    "strings"
)

const (
// [...]
    FUNCTION_OBJ = "FUNCTION"
)

type Function struct {
    Parameters []*ast.Identifier
    Body       *ast.BlockStatement
    Env        *Environment
}

func (f *Function) Type() ObjectType { return FUNCTION_OBJ }
func (f *Function) Inspect() string {
    var out bytes.Buffer

    params := []string{}
    for _, p := range f.Parameters {
        params = append(params, p.String())
    }

    out.WriteString("fn")
    out.WriteString("(")
    out.WriteString(strings.Join(params, ", "))
    out.WriteString(") {\n")
    out.WriteString(f.Body.String())
    out.WriteString("\n}")

    return out.String()
}



This test function asserts that evaluating a function literal results in
the correct *object.Function being returned, with correct parameters
and the correct body. The function’s environment will be tested later
on in other tests, implicitly. Making this test pass takes just a few lines
of code added to Eval in the form of a new case branch:

// evaluator/evaluator_test.go

func TestFunctionObject(t *testing.T) {
    input := "fn(x) { x + 2; };"

    evaluated := testEval(input)
    fn, ok := evaluated.(*object.Function)
    if !ok {
        t.Fatalf("object is not Function. got=%T (%+v)", evaluated, evaluated)
    }

    if len(fn.Parameters) != 1 {
        t.Fatalf("function has wrong parameters. Parameters=%+v",
            fn.Parameters)
    }

    if fn.Parameters[0].String() != "x" {
        t.Fatalf("parameter is not 'x'. got=%q", fn.Parameters[0])
    }

    expectedBody := "(x + 2)"

    if fn.Body.String() != expectedBody {
        t.Fatalf("body is not %q. got=%q", expectedBody, fn.Body.String())
    }
}

// evaluator/evaluator.go

func Eval(node ast.Node, env *object.Environment) object.Object {
// [...]
    case *ast.FunctionLiteral:
        params := node.Parameters
        body := node.Body
        return &object.Function{Parameters: params, Env: env, Body: body}
// [...]
}



Easy, right? The test passes. We just reuse the Parameters and Body
fields of the AST node. Notice how we use the current environment
when building the function object.

With that relatively low-level test passing and thus having made sure
that we build the internal representation of functions correctly, we can
turn to the topic of function application. That means, extending our
interpreter so that we can call functions. The tests for this are much
more readable and easier to write:

Each test case here does the same thing: define a function, apply it to
arguments and then make an assertion about the produced value.
But with their slight differences they test multiple important things:
returning values implicitly, returning values using return statements,
using parameters in expressions, multiple parameters and evaluating
arguments before passing them to the function.

We are also testing two possible forms of *ast.CallExpression here.
One where the function is an identifier that evaluates to a function
object, and the second one where the function is a function literal.

// evaluator/evaluator_test.go

func TestFunctionApplication(t *testing.T) {
    tests := []struct {
        input    string
        expected int64
    }{
        {"let identity = fn(x) { x; }; identity(5);", 5},
        {"let identity = fn(x) { return x; }; identity(5);", 5},
        {"let double = fn(x) { x * 2; }; double(5);", 10},
        {"let add = fn(x, y) { x + y; }; add(5, 5);", 10},
        {"let add = fn(x, y) { x + y; }; add(5 + 5, add(5, 5));", 20},
        {"fn(x) { x; }(5)", 5},
    }

    for _, tt := range tests {
        testIntegerObject(t, testEval(tt.input), tt.expected)
    }
}



The neat thing is that it doesn’t really matter. We already know how to
evaluate identifiers and function literals:

Yes, we’re just using Eval to get the function we want to call. Whether
that’s an *ast.Identifier or an *ast.FunctionLiteral: Eval returns
an *object.Function (if there’s no error, of course).

But how do we do call this *object.Function? The first step is to
evaluate the arguments of a call expression. The reason is simple:

Here we want to pass 4 and 10 to the add function as arguments and
not the expressions 2 + 2 and 5 + 5.

Evaluating the arguments is nothing more than evaluating a list of
expressions and keeping track of the produced values. But we also
have to stop the evaluation process as soon as it encounters an
error. That leads us to this code:

// evaluator/evaluator.go

func Eval(node ast.Node, env *object.Environment) object.Object {
// [...]
    case *ast.CallExpression:
        function := Eval(node.Function, env)
        if isError(function) {
            return function
        }
// [...]
}

let add = fn(x, y) { x + y };
add(2 + 2, 5 + 5);

// evaluator/evaluator.go

func Eval(node ast.Node, env *object.Environment) object.Object {
// [...]
    case *ast.CallExpression:
        function := Eval(node.Function, env)
        if isError(function) {
            return function



Nothing fancy going on here. We just iterate over a list of
ast.Expressions and evaluate them in the context of the current
environment. If we encounter an error, we stop the evaluation and
return the error. This is also the part where we decided to evaluate
the arguments from left-to-right. Hopefully we won’t be writing code in
Monkey that makes assertions about the order of argument
evaluation, but if we do, we’re on the conservative and safe side of
programming language design.

So! Now that we have both the function and the list of evaluated
arguments, how do we “call the function”? How do we apply the
function to the arguments?

The obvious answer is that we have to evaluate the body of the
function, which is just a block statement. We already know how to
evaluate those, so why not just call Eval and pass it the body of the

        }
        args := evalExpressions(node.Arguments, env)
        if len(args) == 1 && isError(args[0]) {
            return args[0]
        }
// [...]
}

func evalExpressions(
    exps []ast.Expression,
    env *object.Environment,
) []object.Object {
    var result []object.Object

    for _, e := range exps {
        evaluated := Eval(e, env)
        if isError(evaluated) {
            return []object.Object{evaluated}
        }
        result = append(result, evaluated)
    }

    return result
}



function? One word: arguments. The body of the function can contain
references to the parameters of the function and just evaluating the
body in the current environment would result in references to
unknown names, which would lead to errors, which is not what we
want. Evaluating the body as it is, in the current environment, does
not work.

What we need to do instead is change the environment in which the
function is evaluated, so that the references to parameters in the
function’s body resolve to the correct arguments. But we can’t just
add these arguments to the current environment. That could lead to
previous bindings being overwritten, which is not what we want. We
want this to work:

With a puts function that prints lines, this should print two lines,
containing 10 and 5 respectively. If we were to overwrite the current
environment before evaluating the body of printNum, the last line
would also result in 10 being printed.

So adding the arguments of the function call to the current
environment in order to make them accessible in the function’s body
does not work. What we need to do instead is to preserve previous
bindings while at the same time making new ones available - we’ll call
that “extending the environment”.

Extending the environment means that we create a new instance of
object.Environment with a pointer to the environment it should
extend. By doing that we enclose a fresh and empty environment with
an existing one.

let i = 5;
let printNum = fn(i) {
  puts(i);
};

printNum(10);
puts(i);



When the new environment’s Get method is called and it itself doesn’t
have a value associated with the given name, it calls the Get of the
enclosing environment. That’s the environment it’s extending. And if
that enclosing environment can’t find the value, it calls its own
enclosing environment and so on until there is no enclosing
environment anymore and we can safely say that we have an
“ERROR: unknown identifier: foobar”.

// object/environment.go

package object

func NewEnclosedEnvironment(outer *Environment) *Environment {
    env := NewEnvironment()
    env.outer = outer
    return env
}

func NewEnvironment() *Environment {
    s := make(map[string]Object)
    return &Environment{store: s, outer: nil}
}

type Environment struct {
    store map[string]Object
    outer *Environment
}

func (e *Environment) Get(name string) (Object, bool) {
    obj, ok := e.store[name]
    if !ok && e.outer != nil {
        obj, ok = e.outer.Get(name)
    }
    return obj, ok
}

func (e *Environment) Set(name string, val Object) Object {
    e.store[name] = val
    return val
}



object.Environment now has a new field called outer that can contain
a reference to another object.Environment, which is the enclosing
environment, the one it’s extending. The NewEnclosedEnvironment
function makes creating such an enclosed environment easy. The Get
method has also been changed. It now checks the enclosing
environment for the given name, too.

This new behaviour mirrors how we think about variable scopes.
There are an inner scope and an outer scope. If something is not
found in the inner scope, it’s looked up in the outer scope. The outer
scope encloses the inner scope. And the inner scope extends the
outer one.

With our updated object.Environment functionality we can correctly
evaluate function bodies. Remember, the problem was this: possibly
overwriting existing bindings in a environment when binding the
arguments of a function call to the parameter names of the function.
Now, instead of overwriting bindings, we create a new environment
that’s enclosed by the current environment and add our bindings to
this fresh and empty environment.

But we won’t use the current environment as the enclosing
environment, no. Instead we’ll use the environment our
*object.Function carries around. Remember that one? That’s the
environment our function was defined in.

Here is the updated version of Eval that handles function calls
completely and correctly:

// evaluator/evaluator.go

func Eval(node ast.Node, env *object.Environment) object.Object {
// [...]
    case *ast.CallExpression:
        function := Eval(node.Function, env)
        if isError(function) {
            return function
        }



In the new applyFunction function we not only check that we really
have a *object.Function at hand but also convert the fn parameter to

        args := evalExpressions(node.Arguments, env)
        if len(args) == 1 && isError(args[0]) {
            return args[0]
        }

        return applyFunction(function, args)
// [...]
}

func applyFunction(fn object.Object, args []object.Object) object.Object {
    function, ok := fn.(*object.Function)
    if !ok {
        return newError("not a function: %s", fn.Type())
    }

    extendedEnv := extendFunctionEnv(function, args)
    evaluated := Eval(function.Body, extendedEnv)
    return unwrapReturnValue(evaluated)
}

func extendFunctionEnv(
    fn *object.Function,
    args []object.Object,
) *object.Environment {
    env := object.NewEnclosedEnvironment(fn.Env)

    for paramIdx, param := range fn.Parameters {
        env.Set(param.Value, args[paramIdx])
    }

    return env
}

func unwrapReturnValue(obj object.Object) object.Object {
    if returnValue, ok := obj.(*object.ReturnValue); ok {
        return returnValue.Value
    }

    return obj
}



a *object.Function reference in order to get access to the function’s
.Env and .Body fields (which object.Object doesn’t define).

The extendFunctionEnv function creates a new *object.Environment
that’s enclosed by the function’s environment. In this new, enclosed
environment it binds the arguments of the function call to the
function’s parameter names.

And this newly enclosed and updated environment is then the
environment in which the function’s body is evaluated. The result of
this evaluation is unwrapped if it’s an *object.ReturnValue. That’s
necessary, because otherwise a return statement would bubble up
through several functions and stop the evaluation in all of them. But
we only want to stop the evaluation of the last called function’s body.
That’s why we need unwrap it, so that evalBlockStatement won’t stop
evaluating statements in “outer” functions. I also added a few test
cases to our previous TestReturnStatements function to make sure
that this works.

Those were the last missing pieces. What? Really? Yeah! Take a look
a this:

$ go test ./evaluator
ok      monkey/evaluator        0.007s
$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> let addTwo = fn(x) { x + 2; };
>> addTwo(2)
4
>> let multiply = fn(x, y) { x * y };
>> multiply(50 / 2, 1 * 2)
50
>> fn(x) { x == 10 }(5)
false
>> fn(x) { x == 10 }(10)
true



Whaaat? Yes! It works! We can now finally define and call functions!
There’s a saying that goes “this is nothing to write home about”. Well,
this is! But before we put on our party hats, it’s worth taking a closer
look at the interaction between functions and their environment and
what it means for function application. Because what we’ve seen is
not all we can do, there is a lot more.

So, I bet that one question still bugs you: “Why extend the function’s
environment and not the current environment?” The short answer is
this:

This test passes. Yes, really:

Monkey has closures and they already work in our interpreter. How
cool is that? Exactly. Very cool. But the connection between closures
and the original question might not be so clear yet. Closures are

// evaluator/evaluator_test.go

func TestClosures(t *testing.T) {
    input := `
let newAdder = fn(x) {
  fn(y) { x + y };
};

let addTwo = newAdder(2);
addTwo(2);`

    testIntegerObject(t, testEval(input), 4)
}

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> let newAdder = fn(x) { fn(y) { x + y } };
>> let addTwo = newAdder(2);
>> addTwo(3);
5
>> let addThree = newAdder(3);
>> addThree(10);
13



functions that “close over” the environment they were defined in.
They carry their own environment around and whenever they’re
called they can access it.

The two important lines from the example above are these:

newAdder here is a higher-order function. Higher-order functions are
functions that either return other functions or receive them as
arguments. In this case newAdder returns another function. But not just
any function: a closure. addTwo is bound to the closure that’s returned
when calling newAdder with 2 as the sole argument.

And what makes addTwo a closure? The bindings it has access to
when called.

When addTwo is called it not only has access to the arguments of the
call, the y parameter, but it can also reach the value x was bound to at
the time of the newAdder(2) call, even though that binding is long out
of scope and not existent in the current environment anymore:

x is not bound to a value in our top-level environment. But addTwo still
has access to it:

In other words: the closure addTwo still has access to the environment
that was the current environment at the time of its definition. Which is
when the last line of newAdder’s body was evaluated. This last line is a
function literal. Remember: when function literals are evaluated we

let newAdder = fn(x) { fn(y) { x + y } };
let addTwo = newAdder(2);

>> let newAdder = fn(x) { fn(y) { x + y } };
>> let addTwo = newAdder(2);
>> x
ERROR: identifier not found: x

>> addTwo(3);
5



build an object.Function and keep a reference to the current
environment in its .Env field.

When we later on evaluate the body of addTwo, we don’t evaluate it in
the current environment, but instead in the function’s environment.
And we do that by extending the function’s environment and passing
it to Eval instead of the current environment. Why? So it can still
access it. Why? So we can use closures. Why? Because they’re
freaking amazing and I love them!

And since we’re talking about amazing things, it’s worth mentioning
that we not only support returning functions from other functions but
also accepting functions as arguments in a function call. Yes,
functions are first-class citizens in Monkey and we can pass them
around like any other value:

Here we pass the add and sub functions as arguments to applyFunc.
applyFunc then calls this function without any problems: the func
parameter resolves to the function object which then gets called with
two arguments. There is not much more to it, everything works
already in our interpreter.

I know what you’re thinking right now and here is a template for the
message you want to send:

Dear NAME_OF_FRIEND, remember when I said that someday I’ll
be someone and do something great people will remember me
for? Well, today’s the day. My Monkey interpreter works and it
supports functions, higher-order functions, closures and

>> let add = fn(a, b) { a + b };
>> let sub = fn(a, b) { a - b };
>> let applyFunc = fn(a, b, func) { func(a, b) };
>> applyFunc(2, 2, add);
4
>> applyFunc(10, 2, sub);
8



integers and arithmetic and long story short: I’ve never been
happier in my life!

We did it. We built a fully working Monkey interpreter that supports
functions and function calls, higher-order functions and closures. Go
on, celebrate! I’ll be waiting here.



3.11 - Who’s taking the trash out?
At the beginning of this book I promised you that we wouldn’t take
any shortcuts and build a fully functional interpreter with our own
hands, from scratch and without any third party tools. And we did! But
now I have a small confession to make.

Consider what happens when we run this snippet of Monkey code in
our interpreter:

Obviously, it would return ‘true’ after evaluating the body of counter
101 times. But a lot is happening until the last of these recursive calls
to counter returns.

The first thing is the evaluation if-else-expression condition: x > 100.
If the produced value is not truthy, the alternative of the if-else-
expression gets evaluated. In the alternative the integer literal 9999
gets bound to the name foobar, which is never referenced again.
Then x + 1 is evaluated. The result of that call to Eval is then passed
to another call to counter. And then it all starts again, until x > 100
evaluates to TRUE.

The point is this: in each call to counter a lot of objects are allocated.
Or to put it in terms of our Eval function and our object system: each
evaluation of counter’s body results in a lot of object.Integer being
allocated and instantiated. The unused 9999 integer literal and the

let counter = fn(x) {
  if (x > 100) {
    return true;
  } else {
    let foobar = 9999;
    counter(x + 1);
  }
};

counter(0);



result of x + 1 are obvious. But even the literals 100 and 1 produce
new object.Integers every time the body of counter is evaluated.

If we were to modify our Eval function to track every instance of
&object.Integer{}, we’d see that running this small snippet of code
results in around 400 allocated object.Integers.

What’s the problem with that?

Our objects are stored in memory. The more objects we use the more
memory we need. And even though the number of objects in the
example is tiny compared to other programs memory is not infinite.

With each call to counter the memory usage of our interpreter
process should rise until it eventually runs out of memory and the
operating system kills it. But if we were to monitor memory usage
while running the snippet above, we’d see that it doesn’t steadily rise
and never goes down. Instead it increases and decreases. Why?

The answer to that question is the heart of the confession I have to
make: we’re reusing Go’s garbage collector as a garbage collector for
our guest language. We do not need to write our own.

Go’s garbage collector (GC) is the reason why we don’t run out of
memory. It manages memory for us. Even when we call the counter
function from above many, many times and thus add a lot more
unused integer literals and object allocations, we won’t run out of
memory. Because the GC keeps track of which object.Integer are
still reachable by us and which are not. When it notices that an object
is not reachable anymore it makes the object’s memory available
again.

The example above generates a lot of integer objects that are
unreachable after a call to counter: the literals 1 and 100 and the
nonsense 9999 bound to foobar. There is no way to access these
objects after counter returns. In the case of 1 and 100 it’s clear that
they’re unreachable, since they’re not bound to a name. But even the



9999 bound to foobar is unreachable since foobar is out of scope
when the function returns. The environment that was constructed for
the evaluation of counter’s body gets destroyed (also by Go’s GC,
mind you!) and with it the foobar binding.

These unreachable objects are useless and take up memory. That’s
why the GC collects them and frees up the memory they used.

And that’s super handy for us! That saves us a lot of work! If we were
to write our interpreter in a language like C, where we don’t have a
GC, we’d need to implement one ourselves to manage memory for
users of the interpreter.

What would such a hypothetical GC need to do? In short: keep track
of object allocations and references to objects, make enough memory
available for future object allocations and give memory back when it’s
not needed anymore. This last point is what garbage collection is all
about. Without it the programs would “leak” and finally run out of
memory.

There are a myriad ways to accomplish all of the above, involving
different algorithms and implementations. For example, there’s the
basic “mark and sweep” algorithm. In order to implement it one has to
decide whether the GC will be a generational GC or not, or whether
it’s a stop-the-world GC or a concurrent GC, or how it’s organizing
memory and handling memory fragmentation. Having decided all of
that an efficient implementation is still a lot of hard work.

But maybe you’re asking yourself: Okay, so we have the GC of Go
available. But can’t we just write our own GC for the guest language
and use that one instead?

Unfortunately, no. We’d have to disable Go’s GC and find a way to
take over all of its duties. That’s easier said than done. It’s a huge
undertaking since we would also have to take care of allocating and
freeing memory ourselves - in a language that per default prohibits
exactly that.



That’s why I decided to not add a “Let’s write our own GC next to
Go’s GC” section to this book and to instead reuse Go’s GC. Garbage
collection itself is a huge topic and adding the dimension of working
around an existing GC blows it out of the scope of this book. But still, I
hope that this section gave you a rough idea of what a GC does and
which problems it solves. Maybe you even know now what to do if
you were to translate the interpreter we built here into another host
language without garbage collection.

And with that… we’re done! Our interpreter works. All that’s left for us
is to extend it and make it more useful by adding more data types and
functions.



Extending the Interpreter



4.1 - Data Types & Functions
Even though our interpreter works amazingly well and has some
mind-blowing features, like first-class functions and closures, the only
data types we had available as users of Monkey were integers and
booleans. That’s not especially useful and a lot less than what we’re
used to from other programming languages. In this chapter we’re
going to change that. We’re going to add new data types to our
interpreter.

The great thing about this endeavor is that it takes us through the
whole interpreter again. We will add new token types, modify the
lexer, extend the parser and finally add support for the data types to
our evaluator and the object system.

Even better is that the data types we’re going to add are already
present in Go. That means that we only need to make them available
in Monkey. We don’t need to implement them from scratch, which is
pretty handy, since this book isn’t called “Implementing Common
Data Structures In Go” and we can concentrate on our interpreter.

In addition to that we’re also going to make the interpreter much more
powerful by adding some new functions. Of course, as users of our
interpreter we could define functions ourselves just fine, but those
were limited in what they could do. These new ones, called built-in
functions, will be much more powerful, since they have access to the
inner workings of the Monkey programming language.

The first thing we’re going to do is add a data type we all know: the
string. Nearly every programming language has it and Monkey shall
have it too.



4.2 - Strings
In Monkey strings are a sequence of characters. They are first-class
values, can be bound to identifiers, used as arguments in functions
calls and be returned by functions. They look just like the strings in
many other programming languages: characters enclosed by double
quotes.

Besides the data type itself, in this section we’ll also add support for
string concatenation by supporting the infix operator + for strings.

At the end, we’ll be able to do this:

Supporting Strings in our Lexer

The first thing we have to do is add support for string literals to our
lexer. The basic structure of strings is this:

That’s not too hard, right? A sequence of characters enclosed by
double quotes.

What we want from our lexer is a single token for each string literal.
So in the case of "Hello World" we want a single token, instead of
tokens for ", Hello, World and ". A single token for string literals
makes handling them in our parser a lot easier and we move the bulk
of the work to one small method in the lexer.

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> let firstName = "Thorsten";
>> let lastName = "Ball";
>> let fullName = fn(first, last) { first + " " + last };
>> fullName(firstName, lastName);
Thorsten Ball

"<sequence of characters>"



Of course, the approach using multiple tokens is also valid and
maybe beneficial in some cases/parsers. We could use " surrounding
token.IDENT tokens. But in our case, we’ll mirror the token.INT integer
tokens we already have and carry the string literal itself around in the
.Literal field of the token.

And with that being clear, it’s time to work on our tokens and our lexer
again. We haven’t touched those since the first chapter, but I’m sure
we’ll do just fine.

The first thing we need to do is add a new STRING token type to our
token package:

With that in place we can add a test case for our lexer to see if strings
are properly supported. To do that we just extend the input in our
TestNextToken test function:

// token/token.go

const (
// [...]
    STRING = "STRING"
// [...]
)

// lexer/lexer_test.go

func TestNextToken(t *testing.T) {
    input := `let five = 5;
let ten = 10;

let add = fn(x, y) {
  x + y;
};

let result = add(five, ten);
!-/*5;
5 < 10 > 5;

if (5 < 10) {
    return true;



The input now has two more lines containing the string literals we
want to turn into tokens. There’s "foobar" to make sure that lexing of
string literals works and "foo bar" to make sure that it still works
even with whitespace inside a literal.

Of course, the tests fail, because we haven’t changed anything in the
Lexer yet:

Fixing the tests is easier than you might think. All we need to do is
add a case branch for " to the switch statement in our Lexer and add a
small helper method:

} else {
    return false;
}

10 == 10;
10 != 9;
"foobar"
"foo bar"
`

    tests := []struct {
        expectedType    token.TokenType
        expectedLiteral string
    }{
// [...]
        {token.STRING, "foobar"},
        {token.STRING, "foo bar"},
        {token.EOF, ""},
    }
// [...]
}

$ go test ./lexer
--- FAIL: TestNextToken (0.00s)
  lexer_test.go:122: tests[73] - tokentype wrong. expected="STRING",\
    got="ILLEGAL"
FAIL
FAIL    monkey/lexer    0.006s



There’s really nothing mysterious about these changes. A new case
branch and a helper function called readString that calls readChar
until it encounters either a closing double quote or the end of the
input.

If you think that this is too easy, feel free to make readString report
an error instead of simply returning when it reaches the end of the
input. Or you can add support for character escaping so that string
literals like "hello \"world\"", "hello\n world" and
"hello\t\t\tworld" work.

Meanwhile, our tests are passing:

// lexer/lexer.go

func (l *Lexer) NextToken() token.Token {
// [...]

    switch l.ch {
// [...]
    case '"':
        tok.Type = token.STRING
        tok.Literal = l.readString()
// [...]
    }

// [...]
}

func (l *Lexer) readString() string {
    position := l.position + 1
    for {
        l.readChar()
        if l.ch == '"' || l.ch == 0 {
            break
        }
    }
    return l.input[position:l.position]
}

$ go test ./lexer
ok      monkey/lexer    0.006s



Great! Our lexer now knows how to handle string literals. It’s time to
teach the parser how to do the same.

Parsing Strings

In order for our parser to turn token.STRING into a string literal AST
node we need to define said node. Thankfully the definition couldn’t
be simpler. It looks really similar to ast.IntegerLiteral, except that
the Value field now contains a string instead of an int64.

Of course, string literals are expressions and not statements. They
evaluate to the string.

With that definition we can write a small test case that makes sure the
parser knows how to handle token.STRING tokens and outputs
*ast.StringLiterals:

// ast/ast.go

type StringLiteral struct {
    Token token.Token
    Value string
}

func (sl *StringLiteral) expressionNode()      {}
func (sl *StringLiteral) TokenLiteral() string { return sl.Token.Literal }
func (sl *StringLiteral) String() string       { return sl.Token.Literal }

// parser/parser_test.go

func TestStringLiteralExpression(t *testing.T) {
    input := `"hello world";`

    l := lexer.New(input)
    p := New(l)
    program := p.ParseProgram()
    checkParserErrors(t, p)

    stmt := program.Statements[0].(*ast.ExpressionStatement)
    literal, ok := stmt.Expression.(*ast.StringLiteral)
    if !ok {



Running the tests results in a well known type of parser error:

We’ve seen that many times before and we know how to fix it. All we
have to do is register a new prefixParseFn for token.STRING tokens.
This parse function then returns an *ast.StringLiteral:

Three new lines! That’s all it takes to make the tests pass:

So now our lexer turns string literals into token.STRING tokens and the
parser turns those into *ast.StringLiteral nodes. We’re now ready
to make changes to our object system and the evaluator.

        t.Fatalf("exp not *ast.StringLiteral. got=%T", stmt.Expression)
    }

    if literal.Value != "hello world" {
        t.Errorf("literal.Value not %q. got=%q", "hello world", literal.Value)
    }
}

$ go test ./parser
--- FAIL: TestStringLiteralExpression (0.00s)
  parser_test.go:888: parser has 1 errors
  parser_test.go:890: parser error: "no prefix parse function for STRING found"
FAIL
FAIL    monkey/parser   0.007s

// parser/parser.go

func New(l *lexer.Lexer) *Parser {
// [...]
    p.registerPrefix(token.STRING, p.parseStringLiteral)
// [...]
}

func (p *Parser) parseStringLiteral() ast.Expression {
    return &ast.StringLiteral{Token: p.curToken, Value: p.curToken.Literal}
}

$ go test ./parser
ok      monkey/parser   0.007s



Evaluating Strings

Representing a string in our object system is as easy as representing
integers. And the biggest reason why it’s so easy is that we reuse
Go’s string data type. Imagine adding a data type to the guest
language that can’t be represented with built-in data structures of the
host language. E.g.: strings in C. That’s a lot more work. But instead,
all we have to do is define a new object that holds a string:

Now we need to extend our evaluator so it turns *ast.StringLiteral
in object.String objects. The test to make sure that this works is tiny:

// object/object.go

const (
// [...]
    STRING_OBJ = "STRING"
)

type String struct {
    Value string
}

func (s *String) Type() ObjectType { return STRING_OBJ }
func (s *String) Inspect() string  { return s.Value }

// evaluator/evaluator_test.go

func TestStringLiteral(t *testing.T) {
    input := `"Hello World!"`

    evaluated := testEval(input)
    str, ok := evaluated.(*object.String)
    if !ok {
        t.Fatalf("object is not String. got=%T (%+v)", evaluated, evaluated)
    }

    if str.Value != "Hello World!" {
        t.Errorf("String has wrong value. got=%q", str.Value)
    }
}



The call to Eval doesn’t return an *object.String yet but nil:

Getting this test to pass needs even fewer lines than in the parser.
Just two:

That makes the tests pass and we can now use strings in our REPL:

We now have full support for strings in our interpreter! Sweet! Or
should I say…

$ go test ./evaluator
--- FAIL: TestStringLiteral (0.00s)
  evaluator_test.go:317: object is not String. got=<nil> (<nil>)
FAIL
FAIL    monkey/evaluator        0.007s

// evaluator/evaluator.go

func Eval(node ast.Node, env *object.Environment) object.Object {
// [...]

    case *ast.StringLiteral:
        return &object.String{Value: node.Value}

// [...]
}

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> "Hello world!"
Hello world!
>> let hello = "Hello there, fellow Monkey users and fans!"
>> hello
Hello there, fellow Monkey users and fans!
>> let giveMeHello = fn() { "Hello!" }
>> giveMeHello()
Hello!

>> "This is amazing!"
This is amazing!



String Concatenation

Having the string data type available is great. But we can’t do much
with strings yet, besides creating them. Let’s change that! In this
section we’re going to add string concatenation to our interpreter.
And we’ll do that by adding support for the + infix operator with string
operands.

What we want is perfectly described by this test:

We can also extend our TestErrorHandling function to make sure that
we only add support for the + operator and nothing more:

// evaluator/evaluator_test.go

func TestStringConcatenation(t *testing.T) {
    input := `"Hello" + " " + "World!"`

    evaluated := testEval(input)
    str, ok := evaluated.(*object.String)
    if !ok {
        t.Fatalf("object is not String. got=%T (%+v)", evaluated, evaluated)
    }

    if str.Value != "Hello World!" {
        t.Errorf("String has wrong value. got=%q", str.Value)
    }
}

// evaluator/evaluator_test.go

func TestErrorHandling(t *testing.T) {
    tests := []struct {
        input           string
        expectedMessage string
    }{
// [...]
        {
            `"Hello" - "World"`,
            "unknown operator: STRING - STRING",
        },
// [...]



This test case is already green and acts more as specification and
regression testing than as a guide for an implementation. But our
concatenation test is failing:

The place where we need to make changes is evalInfixExpression.
Here we need to add a new branch to the existing switch statement
that’s evaluated when both operands are strings:

The evalStringInfixExpression is the most minimal implementation
possible:

    }

// [...]
}

$ go test ./evaluator
--- FAIL: TestStringConcatenation (0.00s)
  evaluator_test.go:336: object is not String. got=*object.Error\
    (&{Message:unknown operator: STRING + STRING})
FAIL
FAIL    monkey/evaluator        0.007s

// evaluator/evaluator.go

func evalInfixExpression(
    operator string,
    left, right object.Object,
) object.Object {
    switch {
// [...]
    case left.Type() == object.STRING_OBJ && right.Type() == object.STRING_OBJ:
        return evalStringInfixExpression(operator, left, right)
// [...]
    }
}

// evaluator/evaluator.go

func evalStringInfixExpression(
    operator string,
    left, right object.Object,



The first thing here is the check for the correct operator. If it’s the
supported + we unwrap the string objects and construct a new string
that’s a concatenation of both operands.

If we want to support more operators for strings this is the place
where to add them. Also, if we want to support comparison of strings
with the == and != we’d need to add this here too. Pointer comparison
doesn’t work for strings, at least not in the way we want it to: with
strings we want to compare values and not pointers.

And that’s it! Our tests pass:

We can now use string literals, pass them around, bind them to
names, return them from functions and also concatenate them:

Alright! I’d say strings are now working very well in our interpreter.
But we can still add something else to work with them…

) object.Object {
    if operator != "+" {
        return newError("unknown operator: %s %s %s",
            left.Type(), operator, right.Type())
    }

    leftVal := left.(*object.String).Value
    rightVal := right.(*object.String).Value
    return &object.String{Value: leftVal + rightVal}
}

$ go test ./evaluator
ok      monkey/evaluator        0.007s

>> let makeGreeter = fn(greeting) { fn(name) { greeting + " " + name + "!" } };
>> let hello = makeGreeter("Hello");
>> hello("Thorsten");
Hello Thorsten!
>> let heythere = makeGreeter("Hey there");
>> heythere("Thorsten");
Hey there Thorsten!



4.3 - Built-in Functions
In this section we’re going to add built-in functions to our interpreter.
They’re called “built-in”, because they’re not defined by a user of the
interpreter and they’re not Monkey code - they are built right into the
interpreter, into the language itself.

These built-in functions are defined by us, in Go, and bridge the world
of Monkey with the world of our interpreter implementation. A lot of
language implementations provide such functions to offer
functionality to the language’s user that’s not provided “inside” the
language.

Here’s an example: a function that returns the current time. In order to
get the current time one could ask the kernel (or another computer,
etc.). Asking and talking to the kernel is normally done via something
called system calls. But if the programming language doesn’t offer
users to make such system calls themselves, then the language
implementation, be it the compiler or the interpreter, has to provide
something to make these system calls on behalf of the users instead.

So, again, the built-in functions we’re going to add are defined by us,
the implementers of the interpreter. The user of the interpreter can
call them, but we define them. What these functions can do, we leave
open. The only restriction they have is that they need to accept zero
or more object.Object as arguments and return an object.Object.

That’s the type definition of a callable Go function. But since we need
to make these BuiltinFunctions available to our users we need to fit
them into our object system. We do that by wrapping them:

// object/object.go

type BuiltinFunction func(args ...Object) Object



There’s not much to object.Builtin, as you can see. It’s clearly just a
wrapper. But in combination with object.BuiltinFunction it’s enough
to get us started.

len

The first built-in function we’re going to add to our interpreter is len.
Its job is to return the number of characters in a string. It’s impossible
to define this function as a user of Monkey. That’s why we need it to
be built-in. What we want from len is this:

I think that makes the idea behind len pretty clear. So clear in fact,
that we can easily write a test for it:

// object/object.go

const (
// [...]
    BUILTIN_OBJ = "BUILTIN"
)

type Builtin struct {
    Fn BuiltinFunction
}

func (b *Builtin) Type() ObjectType { return BUILTIN_OBJ }
func (b *Builtin) Inspect() string  { return "builtin function" }

>> len("Hello World!")
12
>> len("")
0
>> len("Hey Bob, how ya doin?")
21

// evaluator/evaluator_test.go

func TestBuiltinFunctions(t *testing.T) {
    tests := []struct {
        input    string
        expected interface{}



So here we have a few test cases that run len through its paces: an
empty string, a normal string and a string containing whitespace. It
really shouldn’t matter if there’s whitespace in the string, but you’ll
never know, so I put the test case in. The last two test cases are more
interesting: we want to make sure that len returns an *object.Error
when called with an integer or with the wrong number of arguments.

If we run the tests we can see that calling len gives us an error, but
not the one expected in our test case:

    }{
        {`len("")`, 0},
        {`len("four")`, 4},
        {`len("hello world")`, 11},
        {`len(1)`, "argument to `len` not supported, got INTEGER"},
        {`len("one", "two")`, "wrong number of arguments. got=2, want=1"},
    }

    for _, tt := range tests {
        evaluated := testEval(tt.input)

        switch expected := tt.expected.(type) {
        case int:
            testIntegerObject(t, evaluated, int64(expected))
        case string:
            errObj, ok := evaluated.(*object.Error)
            if !ok {
                t.Errorf("object is not Error. got=%T (%+v)",
                    evaluated, evaluated)
                continue
            }
            if errObj.Message != expected {
                t.Errorf("wrong error message. expected=%q, got=%q",
                    expected, errObj.Message)
            }
        }
    }
}

$ go test ./evaluator
--- FAIL: TestBuiltinFunctions (0.00s)
  evaluator_test.go:389: object is not Integer. got=*object.Error\



len can’t be found, which isn’t that baffling considering that we
haven’t defined it yet.

In order to do that, the first thing we have to do is provide a way for
built-in functions to be found. One option is to add them to the top-
level object.Environment, that gets passed into Eval. But instead
we’re going to keep a separate environment of built-in functions:

In order to make use of that, we need to edit our evalIdentifier
function to lookup built-in functions as a fallback when the given
identifier is not bound to a value in the current environment:

    (&{Message:identifier not found: len})
  evaluator_test.go:389: object is not Integer. got=*object.Error\
    (&{Message:identifier not found: len})
  evaluator_test.go:389: object is not Integer. got=*object.Error\
    (&{Message:identifier not found: len})
  evaluator_test.go:371: wrong error message.\
    expected="argument to `len` not supported, got INTEGER",\
    got="identifier not found: len"
FAIL
FAIL    monkey/evaluator        0.007s

// evaluator/builtins.go

package evaluator

import "monkey/object"

var builtins = map[string]*object.Builtin{
    "len": &object.Builtin{
        Fn: func(args ...object.Object) object.Object {
            return NULL
        },
    },
}

// evaluator/evaluator.go

func evalIdentifier(
    node *ast.Identifier,
    env *object.Environment,



So now len is found when looking up the len identifier, calling it
doesn’t work yet:

Running the tests gives us the same error. We need to teach our
applyFunction about *object.Builtin and object.BuiltinFunction:

) object.Object {
    if val, ok := env.Get(node.Value); ok {
        return val
    }

    if builtin, ok := builtins[node.Value]; ok {
        return builtin
    }

    return newError("identifier not found: " + node.Value)
}

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> len()
ERROR: not a function: BUILTIN
>>

// evaluator/evaluator.go

func applyFunction(fn object.Object, args []object.Object) object.Object {
    switch fn := fn.(type) {

    case *object.Function:
        extendedEnv := extendFunctionEnv(fn, args)
        evaluated := Eval(fn.Body, extendedEnv)
        return unwrapReturnValue(evaluated)

    case *object.Builtin:
        return fn.Fn(args...)

    default:
        return newError("not a function: %s", fn.Type())
    }
}



Besides moving the existing lines around, what changed here is the
addition of the case *object.Builtin branch, in which we call the
object.BuiltinFunction. Doing so is as easy as using the args slice
as arguments and calling the function.

Of note is that we don’t need to unwrapReturnValue when calling a
built-in function. That’s because we never return an
*object.ReturnValue from these functions.

Now the tests are rightfully complaining about NULL being returned
when calling len:

That means that calling len works though! It’s just that it returns only
NULL. But fixing this is as easy as writing any other Go function:

$ go test ./evaluator
--- FAIL: TestBuiltinFunctions (0.00s)
  evaluator_test.go:389: object is not Integer. got=*object.Null (&{})
  evaluator_test.go:389: object is not Integer. got=*object.Null (&{})
  evaluator_test.go:389: object is not Integer. got=*object.Null (&{})
  evaluator_test.go:366: object is not Error. got=*object.Null (&{})
  evaluator_test.go:366: object is not Error. got=*object.Null (&{})
FAIL
FAIL    monkey/evaluator        0.007s

// evaluator/builtins.go

import (
    "monkey/object"
)

var builtins = map[string]*object.Builtin{
    "len": &object.Builtin{
        Fn: func(args ...object.Object) object.Object {
            if len(args) != 1 {
                return newError("wrong number of arguments. got=%d, want=1",
                    len(args))
            }

            switch arg := args[0].(type) {
            case *object.String:
                return &object.Integer{Value: int64(len(arg.Value))}



The most important part of this function is the call to Go’s len and the
returning of a newly allocated object.Integer. Besides that we have
error checking that makes sure that we can’t call this function with the
wrong number of arguments or with an argument of an unsupported
type. And alas, our tests pass:

That means we can take len on a test drive in our REPL:

Perfect! Our first built-in function works and is ready to go.

            default:
                return newError("argument to `len` not supported, got %s",
                    args[0].Type())
            }
        },
    },
}

$ go test ./evaluator
ok      monkey/evaluator        0.007s

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> len("1234")
4
>> len("Hello World!")
12
>> len("Woooooohooo!", "len works!!")
ERROR: wrong number of arguments. got=2, want=1
>> len(12345)
ERROR: argument to `len` not supported, got INTEGER



4.4 - Array
The data type we’re going to add to our Monkey interpreter in this
section is the array. In Monkey an array is an ordered list of elements
of possibly different types. Each element in the array can be
accessed individually. Arrays are constructed by using their literal
form: a comma separated list of elements, enclosed by brackets.

Initializing a new array, binding it to a name and accessing individual
elements will look like this:

As you can see, Monkey arrays really don’t care about the types of
their elements. Every possible value in Monkey can be an element in
an array. In this example myArray holds two strings, an integer and a
function.

Accessing individual elements by their index in the array, as seen in
the last three lines, is done with a new operator, called the index
operator: array[index].

In this section we’ll also add support for arrays to our newly added
len function and also add a few more built-in functions that work with
arrays:

>> let myArray = ["Thorsten", "Ball", 28, fn(x) { x * x }];
>> myArray[0]
Thorsten
>> myArray[2]
28
>> myArray[3](2);
4

>> let myArray = ["one", "two", "three"];
>> len(myArray)
3
>> first(myArray)
one
>> rest(myArray)



The basis for our implementation of the Monkey array in our
interpreter will be a Go slice of type []object.Object. That means
that we don’t have to implement a new data structure. We can just
reuse Go’s slice.

Sounds awesome? Good! The first thing we have to do is teach our
lexer a few new tokens.

Supporting Arrays in our Lexer

In order to correctly parse array literals and the index operator, our
lexer needs to be able to identify more tokens than it currently does.
All the tokens we need in order to construct and use arrays in
Monkey are [, ] and ,. The lexer already knows about , so we only
need to add support for [ and ].

The first step is to define these new token types in the token package:

The second step is to extend the test suite of the lexer, which is easy,
since we’ve done this many times before:

[two, three]
>> last(myArray)
three
>> push(myArray, "four")
[one, two, three, four]

// token/token.go

const (
// [...]

    LBRACKET = "["
    RBRACKET = "]"

// [...]
)

// lexer/lexer_test.go



Again the input is extended to include new tokens ([1, 2] in this
case) and new tests have been added to make sure the lexer’s
NextToken method really returns token.LBRACKET and token.RBRACKET.

func TestNextToken(t *testing.T) {
    input := `let five = 5;
let ten = 10;

let add = fn(x, y) {
  x + y;
};

let result = add(five, ten);
!-/*5;
5 < 10 > 5;

if (5 < 10) {
    return true;
} else {
    return false;
}

10 == 10;
10 != 9;
"foobar"
"foo bar"
[1, 2];
`

    tests := []struct {
        expectedType    token.TokenType
        expectedLiteral string
    }{
// [...]
        {token.LBRACKET, "["},
        {token.INT, "1"},
        {token.COMMA, ","},
        {token.INT, "2"},
        {token.RBRACKET, "]"},
        {token.SEMICOLON, ";"},
        {token.EOF, ""},
    }
// [...]
}



Making the test pass is as easy as adding these four lines to our
NextToken() method. Yes, just four:

Alright! The tests are passing:

In our parser we’ll now use token.LBRACKET and token.RBRACKET to
parse arrays.

Parsing Array Literals

As we saw before, an array literal in Monkey is a comma-separated
list of expressions enclosed by an opening and a closing bracket.

Yes, the elements in an array literal can be any type of expression.
Integer literals, function literals, infix or prefix expressions.

If that sounds complicated, don’t worry. We already know how to
parse comma-separated lists of expressions - function call arguments
are just that. And we also know how to parse something enclosed by
matching tokens. In other words: let’s get to it!

// lexer/lexer.go

func (l *Lexer) NextToken() token.Token {
// [...]

    case '[':
        tok = newToken(token.LBRACKET, l.ch)
    case ']':
        tok = newToken(token.RBRACKET, l.ch)

// [...]
}

$ go test ./lexer
ok      monkey/lexer    0.006s

[1, 2, 3 + 3, fn(x) { x }, add(2, 2)]



The first thing we have to do is define the AST node for array literals.
Since we already have the essential pieces in place for this, the
definition is rather self-explanatory:

The following test function makes sure that parsing array literals
results in a *ast.ArrayLiteral being returned. (I also added a test
function for empty array literals to make sure that we don’t run into
nasty edge-cases)

// ast/ast.go

type ArrayLiteral struct {
    Token    token.Token // the '[' token
    Elements []Expression
}

func (al *ArrayLiteral) expressionNode()      {}
func (al *ArrayLiteral) TokenLiteral() string { return al.Token.Literal }
func (al *ArrayLiteral) String() string {
    var out bytes.Buffer

    elements := []string{}
    for _, el := range al.Elements {
        elements = append(elements, el.String())
    }

    out.WriteString("[")
    out.WriteString(strings.Join(elements, ", "))
    out.WriteString("]")

    return out.String()
}

// parser/parser_test.go

func TestParsingArrayLiterals(t *testing.T) {
    input := "[1, 2 * 2, 3 + 3]"

    l := lexer.New(input)
    p := New(l)
    program := p.ParseProgram()
    checkParserErrors(t, p)



Just to make sure that the parsing of expressions really works the
test input contains two different infix operator expressions, even
though integer or boolean literals would be enough. Other than that
the test is pretty boring and asserts that the parser really returns an
*ast.ArrayLiteral with the correct number of elements.

In order to get the tests to pass we need to register a new
prefixParseFn in our parser, since the opening token.LBRACKET of an
array literal is in prefix position.

    stmt, ok := program.Statements[0].(*ast.ExpressionStatement)
    array, ok := stmt.Expression.(*ast.ArrayLiteral)
    if !ok {
        t.Fatalf("exp not ast.ArrayLiteral. got=%T", stmt.Expression)
    }

    if len(array.Elements) != 3 {
        t.Fatalf("len(array.Elements) not 3. got=%d", len(array.Elements))
    }

    testIntegerLiteral(t, array.Elements[0], 1)
    testInfixExpression(t, array.Elements[1], 2, "*", 2)
    testInfixExpression(t, array.Elements[2], 3, "+", 3)
}

// parser/parser.go

func New(l *lexer.Lexer) *Parser {
// [...]

    p.registerPrefix(token.LBRACKET, p.parseArrayLiteral)

// [...]
}

func (p *Parser) parseArrayLiteral() ast.Expression {
    array := &ast.ArrayLiteral{Token: p.curToken}

    array.Elements = p.parseExpressionList(token.RBRACKET)

    return array
}



We’ve added prefixParseFns before, so that part’s not really exciting.
What’s interesting here is the new method called
parseExpressionList. This method is a modified and generalized
version of parseCallArguments, which we used before in
parseCallExpression to parse a list of comma separated arguments:

Again, we’ve seen this before under the name parseCallArguments.
The only change is that this new version now accepts an end
parameter that tells the method which token signifies the end of the
list. The updated parseCallExpression method, in which we used
parseCallArguments before, now looks like this:

// parser/parser.go

func (p *Parser) parseExpressionList(end token.TokenType) []ast.Expression {
    list := []ast.Expression{}

    if p.peekTokenIs(end) {
        p.nextToken()
        return list
    }

    p.nextToken()
    list = append(list, p.parseExpression(LOWEST))

    for p.peekTokenIs(token.COMMA) {
        p.nextToken()
        p.nextToken()
        list = append(list, p.parseExpression(LOWEST))
    }

    if !p.expectPeek(end) {
        return nil
    }

    return list
}

// parser/parser.go

func (p *Parser) parseCallExpression(function ast.Expression) ast.Expression {
    exp := &ast.CallExpression{Token: p.curToken, Function: function}



The only change is the call to parseExpressionList with token.RPAREN
(which signifies the end of the arguments list). We could reuse a
relatively big method by changing a few lines. Great! And the best of
all? The tests are passing:

We can mark “parsing array literals” as “done”.

Parsing Index Operator Expressions

To fully support arrays in Monkey we not only need to be able to
parse array literals but also index operator expressions. Maybe the
name “index operator” doesn’t ring a bell, but I bet you know what it
is. Index operator expressions look like this:

That’s the basic form at least, but there are many. Take a look at
these examples to spot the structure underlying them all:

Yep, you’re totally correct! The basic structure is this one:

    exp.Arguments = p.parseExpressionList(token.RPAREN)
    return exp
}

$ go test ./parser
ok      monkey/parser   0.007s

myArray[0];
myArray[1];
myArray[2];

[1, 2, 3, 4][2];

let myArray = [1, 2, 3, 4];
myArray[2];

myArray[2 + 1];

returnsArray()[1];

<expression>[<expression>]



That seems simple enough. We can define a new AST node, called
ast.IndexExpression, that reflects this structure:

It’s important to note that both Left and Index are just Expressions.
Left is the object that’s being accessed and we’ve seen that it can be
of any type: an identifier, an array literal, a function call. The same
goes for Index. It can be any expression. Syntactically it doesn’t make
a difference which one it is, but semantically it has to produce an
integer.

The fact that both Left and Index are expressions makes the parsing
process easier, because we can use our parseExpression method to
parse them. But first things first! Here is the test case that makes sure
our parser knows how to return an *ast.IndexExpression:

// ast/ast.go

type IndexExpression struct {
    Token token.Token // The [ token
    Left  Expression
    Index Expression
}

func (ie *IndexExpression) expressionNode()      {}
func (ie *IndexExpression) TokenLiteral() string { return ie.Token.Literal }
func (ie *IndexExpression) String() string {
    var out bytes.Buffer

    out.WriteString("(")
    out.WriteString(ie.Left.String())
    out.WriteString("[")
    out.WriteString(ie.Index.String())
    out.WriteString("])")

    return out.String()
}

// parser/parser_test.go

func TestParsingIndexExpressions(t *testing.T) {
    input := "myArray[1 + 1]"



Now, this test only asserts that the parser outputs the correct AST for
a single expression statement containing an index expression. But
equally important is that the parser handles the precedence of the
index operator correctly. The index operator has to have the highest
precedence of all operators yet. Making sure of that is as easy as
extending our existing TestOperatorPrecedenceParsing test function:

    l := lexer.New(input)
    p := New(l)
    program := p.ParseProgram()
    checkParserErrors(t, p)

    stmt, ok := program.Statements[0].(*ast.ExpressionStatement)
    indexExp, ok := stmt.Expression.(*ast.IndexExpression)
    if !ok {
        t.Fatalf("exp not *ast.IndexExpression. got=%T", stmt.Expression)
    }

    if !testIdentifier(t, indexExp.Left, "myArray") {
        return
    }

    if !testInfixExpression(t, indexExp.Index, 1, "+", 1) {
        return
    }
}

// parser/parser_test.go

func TestOperatorPrecedenceParsing(t *testing.T) {
    tests := []struct {
        input    string
        expected string
    }{
// [...]
        {
            "a * [1, 2, 3, 4][b * c] * d",
            "((a * ([1, 2, 3, 4][(b * c)])) * d)",
        },
        {
            "add(a * b[2], b[1], 2 * [1, 2][1])",
            "add((a * (b[2])), (b[1]), (2 * ([1, 2][1])))",



The additional ( and ) in the String() output of *ast.IndexExpression
help us when writing these tests, since they make the precedence of
the index operator visible. In these added test cases we expect that
the precedence of the index operator is higher than the precedence
of call expressions or even the * operator in infix expressions.

The tests fail because the parser doesn’t know anything about index
expressions yet:

Even though the tests complain about a missing prefixParseFn what
we want is an infixParseFn. Yes, index operator expressions do not
really have a single operator between operands on each side. But in
order to parse them without a lot of trouble it’s of advantage to act like
they do, just like we did with call expressions. Specifically, that means
treating the [ in myArray[0] as the infix operator, myArray as the left
operand and 0 as the right operand.

Doing this makes the implementation fit really nicely into our parser:

        },
    }
// [...]
}

$ go test ./parser
--- FAIL: TestOperatorPrecedenceParsing (0.00s)
  parser_test.go:393: expected="((a * ([1, 2, 3, 4][(b * c)])) * d)",\
    got="(a * [1, 2, 3, 4])([(b * c)] * d)"
  parser_test.go:968: parser has 4 errors
  parser_test.go:970: parser error: "expected next token to be ), got [ instead"
  parser_test.go:970: parser error: "no prefix parse function for , found"
  parser_test.go:970: parser error: "no prefix parse function for , found"
  parser_test.go:970: parser error: "no prefix parse function for ) found"
--- FAIL: TestParsingIndexExpressions (0.00s)
  parser_test.go:835: exp not *ast.IndexExpression. got=*ast.Identifier
FAIL
FAIL    monkey/parser   0.007s

// parser/parser.go

func New(l *lexer.Lexer) *Parser {



Neat! But that doesn’t fix our tests:

That’s because the whole idea behind our Pratt parser hinges on the
idea of precedences and we haven’t defined the precedence of our
index operator yet:

// [...]

    p.registerInfix(token.LBRACKET, p.parseIndexExpression)

// [...]
}

func (p *Parser) parseIndexExpression(left ast.Expression) ast.Expression {
    exp := &ast.IndexExpression{Token: p.curToken, Left: left}

    p.nextToken()
    exp.Index = p.parseExpression(LOWEST)

    if !p.expectPeek(token.RBRACKET) {
        return nil
    }

    return exp
}

$ go test ./parser
--- FAIL: TestOperatorPrecedenceParsing (0.00s)
  parser_test.go:393: expected="((a * ([1, 2, 3, 4][(b * c)])) * d)",\
    got="(a * [1, 2, 3, 4])([(b * c)] * d)"
  parser_test.go:968: parser has 4 errors
  parser_test.go:970: parser error: "expected next token to be ), got [ instead"
  parser_test.go:970: parser error: "no prefix parse function for , found"
  parser_test.go:970: parser error: "no prefix parse function for , found"
  parser_test.go:970: parser error: "no prefix parse function for ) found"
--- FAIL: TestParsingIndexExpressions (0.00s)
  parser_test.go:835: exp not *ast.IndexExpression. got=*ast.Identifier
FAIL
FAIL    monkey/parser   0.008s

// parser/parser.go
const (
    _ int = iota



It’s important that the definition of INDEX is the last line in the const
block. That gives INDEX the highest value of all defined precedence
constants, thanks to the iota. The added entry in precedences gives
token.LBRACKET this highest precedence of all, INDEX. And, well, it
does wonders:

Lexer done, parser done. See you in the evaluator!

Evaluating Array Literals

Evaluating array literals is not hard. Mapping Monkey arrays to Go’s
slices makes life pretty, pretty sweet. We don’t have to implement a
new data structure. We only need to define a new object.Array type,
since that’s what the evaluation of array literals produces. And the
definition of object.Array is simple, since arrays in Monkey are
simple: they are just a list of objects.

// [...]
    INDEX       // array[index]
)

var precedences = map[token.TokenType]int{
// [...]
    token.LBRACKET: INDEX,
}

$ go test ./parser
ok      monkey/parser   0.007s

// object/object.go

const (
// [...]
    ARRAY_OBJ = "ARRAY"
)

type Array struct {
    Elements []Object
}

func (ao *Array) Type() ObjectType { return ARRAY_OBJ }



I think you’ll agree with me when I say that the most complicated
thing about this definition is the Inspect method. And even that one is
pretty easy to understand.

Here is the evaluator test for array literals:

func (ao *Array) Inspect() string {
    var out bytes.Buffer

    elements := []string{}
    for _, e := range ao.Elements {
        elements = append(elements, e.Inspect())
    }

    out.WriteString("[")
    out.WriteString(strings.Join(elements, ", "))
    out.WriteString("]")

    return out.String()
}

// evaluator/evaluator_test.go

func TestArrayLiterals(t *testing.T) {
    input := "[1, 2 * 2, 3 + 3]"

    evaluated := testEval(input)
    result, ok := evaluated.(*object.Array)
    if !ok {
        t.Fatalf("object is not Array. got=%T (%+v)", evaluated, evaluated)
    }

    if len(result.Elements) != 3 {
        t.Fatalf("array has wrong num of elements. got=%d",
            len(result.Elements))
    }

    testIntegerObject(t, result.Elements[0], 1)
    testIntegerObject(t, result.Elements[1], 4)
    testIntegerObject(t, result.Elements[2], 6)
}



We can reuse some existing code to get this test to pass, just like we
did in our parser. And again the code we’re reusing was originally
written for call expressions. Here is the case branch that evaluates
*ast.ArrayLiterals and produces array objects:

Isn’t that one of the great joys of programming? Reusing existing
code without having to turn it into a super generic, over-engineered
spaceship.

The tests are passing and we can use array literals in our REPL to
produce arrays:

Amazing, isn’t it? But what we can’t do yet is accessing single
elements of the array by using the index operator.

// evaluator/evaluator.go

func Eval(node ast.Node, env *object.Environment) object.Object {
// [...]

    case *ast.ArrayLiteral:
        elements := evalExpressions(node.Elements, env)
        if len(elements) == 1 && isError(elements[0]) {
            return elements[0]
        }
        return &object.Array{Elements: elements}
    }

// [...]
}

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> [1, 2, 3, 4]
[1, 2, 3, 4]
>> let double = fn(x) { x * 2 };
>> [1, double(2), 3 * 3, 4 - 3]
[1, 4, 9, 1]
>>



Evaluating Index Operator Expressions

Great news: much harder than evaluating index expressions is
parsing them. And we already did that. The only problem left is the
possibility of off-by-one errors when accessing and retrieving the
elements in an array. But for that we’ll just add a few tests to our test
suite:

// evaluator/evaluator_test.go

func TestArrayIndexExpressions(t *testing.T) {
    tests := []struct {
        input    string
        expected interface{}
    }{
        {
            "[1, 2, 3][0]",
            1,
        },
        {
            "[1, 2, 3][1]",
            2,
        },
        {
            "[1, 2, 3][2]",
            3,
        },
        {
            "let i = 0; [1][i];",
            1,
        },
        {
            "[1, 2, 3][1 + 1];",
            3,
        },
        {
            "let myArray = [1, 2, 3]; myArray[2];",
            3,
        },
        {
            "let myArray = [1, 2, 3]; myArray[0] + myArray[1] + myArray[2];",
            6,
        },



Okay, I’ll admit, these tests might seem excessive. A lot of the things
we’re testing implicitly here have already been tested elsewhere. But
the test cases are so easy to write! And they are so readable! I love
these tests.

Take note of the desired behaviour these tests specify. They contain
something we haven’t talked about yet: when we use an index that’s
out of the arrays bounds, we’ll return NULL. Some languages produce
an error in such a case and some return a null value. I choose to
return NULL.

As expected the tests are failing. And not only that, they’re blowing
up:

        {
            "let myArray = [1, 2, 3]; let i = myArray[0]; myArray[i]",
            2,
        },
        {
            "[1, 2, 3][3]",
            nil,
        },
        {
            "[1, 2, 3][-1]",
            nil,
        },
    }

    for _, tt := range tests {
        evaluated := testEval(tt.input)
        integer, ok := tt.expected.(int)
        if ok {
            testIntegerObject(t, evaluated, int64(integer))
        } else {
            testNullObject(t, evaluated)
        }
    }
}

$ go test ./evaluator
--- FAIL: TestArrayIndexExpressions (0.00s)
  evaluator_test.go:492: object is not Integer. got=<nil> (<nil>)



So how do we fix this and evaluate index expressions? As we’ve
seen, the left operand of the index operator can be any expression
and the index itself can be any expression. That means we need to
evaluate both before we can evaluate the “indexing” itself. Otherwise
we’d try to access elements of an identifier or a function call, which
doesn’t work.

Here is the case branch for *ast.IndexExpression that makes these
desired calls to Eval:

And here is the evalIndexExpression function it uses:

  evaluator_test.go:492: object is not Integer. got=<nil> (<nil>)
  evaluator_test.go:492: object is not Integer. got=<nil> (<nil>)
  evaluator_test.go:492: object is not Integer. got=<nil> (<nil>)
  evaluator_test.go:492: object is not Integer. got=<nil> (<nil>)
  evaluator_test.go:492: object is not Integer. got=<nil> (<nil>)
panic: runtime error: invalid memory address or nil pointer dereference
[signal SIGSEGV: segmentation violation code=0x1 addr=0x28 pc=0x70057]
[redacted: backtrace here]
FAIL    monkey/evaluator        0.011s

// evaluator/evaluator.go

func Eval(node ast.Node, env *object.Environment) object.Object {
// [...]

    case *ast.IndexExpression:
        left := Eval(node.Left, env)
        if isError(left) {
            return left
        }
        index := Eval(node.Index, env)
        if isError(index) {
            return index
        }
        return evalIndexExpression(left, index)

// [...]
}



An if-conditional would do the job of the switch statement here just
fine, but we’re going to add another case branch later in this chapter.
Besides the error handling (for which I also added a test) nothing
really interesting happens in this function. The meat of the operation
is in evalArrayIndexExpression:

Here we actually retrieve the element with the specified index from
the array. Besides the little type assertion and conversion dances this
function is pretty straightforward: it checks if the given index is out of
range and if that’s the case it returns NULL, otherwise the desired
element. Just like we specified in our tests, which are now passing:

Okay, now take a deep breath, relax and take a look at this:

// evaluator/evaluator.go

func evalIndexExpression(left, index object.Object) object.Object {
    switch {
    case left.Type() == object.ARRAY_OBJ && index.Type() == object.INTEGER_OBJ:
        return evalArrayIndexExpression(left, index)
    default:
        return newError("index operator not supported: %s", left.Type())
    }
}

// evaluator/evaluator.go

func evalArrayIndexExpression(array, index object.Object) object.Object {
    arrayObject := array.(*object.Array)
    idx := index.(*object.Integer).Value
    max := int64(len(arrayObject.Elements) - 1)

    if idx < 0 || idx > max {
        return NULL
    }

    return arrayObject.Elements[idx]
}

$ go test ./evaluator
ok      monkey/evaluator        0.007s



Retrieving elements from an array works! Sweet! I can only repeat
myself here: it’s amazing how easy it was to implement this language
feature, isn’t it?

Adding Built-in Functions for Arrays

We are now able to construct arrays by using array literals. And we
can access single elements by using index expressions. Just those
two things alone make arrays quite useful to have. But in order to
make them even more useful, we need to add a few built-in functions
that make working with them more convenient. In this sub-section
we’re going to do exactly that.

I won’t be showing any test code and test cases in this section. The
reason is that these particular tests take up space without adding
anything new. Our “framework” for testing built-in functions is already
in place with TestBuiltinFunctions and the added tests follow the
existing scheme. You can find them in the accompanying code.

Our goal is to add new built-in functions. But the first thing we actually
have to do is not adding a new one but changing an existing function.
We need to add support for arrays to len, which only supported
strings until now:

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> let a = [1, 2 * 2, 10 - 5, 8 / 2];
>> a[0]
1
>> a[1]
4
>> a[5 - 3]
5
>> a[99]
null

// evaluator/builtins.go



The only change is the added case branch for *object.Array. And
with that out of the way, we’re ready to start adding new functions.
Yay!

The first of these new built-in functions is first. first returns the first
element of the given array. Yes, calling myArray[0] does the same
thing. But first is arguably prettier. Here is its implementation:

var builtins = map[string]*object.Builtin{
    "len": &object.Builtin{
        Fn: func(args ...object.Object) object.Object {
            if len(args) != 1 {
                return newError("wrong number of arguments. got=%d, want=1",
                    len(args))
            }

            switch arg := args[0].(type) {
            case *object.Array:
                return &object.Integer{Value: int64(len(arg.Elements))}
            case *object.String:
                return &object.Integer{Value: int64(len(arg.Value))}
            default:
                return newError("argument to `len` not supported, got %s",
                    args[0].Type())
            }
        },
    },
}

// evaluator/builtins.go

var builtins = map[string]*object.Builtin{
// [...]

    "first": &object.Builtin{
        Fn: func(args ...object.Object) object.Object {
            if len(args) != 1 {
                return newError("wrong number of arguments. got=%d, want=1",
                    len(args))
            }
            if args[0].Type() != object.ARRAY_OBJ {
                return newError("argument to `first` must be ARRAY, got %s",
                    args[0].Type())



Great! That works! And what comes after first? You’re correct, the
next function we’re going to add is called last.

The purpose of last is to return the last element of the given array. In
index operator terms it returns myArray[len(myArray)-1]. And as it
turns out, implementing last is not much harder than implementing
first - who would have thought that? Here it is:

            }

            arr := args[0].(*object.Array)
            if len(arr.Elements) > 0 {
                return arr.Elements[0]
            }

            return NULL
        },
    },
}

// evaluator/builtins.go

var builtins = map[string]*object.Builtin{
// [...]

    "last": &object.Builtin{
        Fn: func(args ...object.Object) object.Object {
            if len(args) != 1 {
                return newError("wrong number of arguments. got=%d, want=1",
                    len(args))
            }
            if args[0].Type() != object.ARRAY_OBJ {
                return newError("argument to `last` must be ARRAY, got %s",
                    args[0].Type())
            }

            arr := args[0].(*object.Array)
            length := len(arr.Elements)
            if length > 0 {
                return arr.Elements[length-1]
            }

            return NULL



The next function we’re going to add would be called cdr in Scheme.
In some other languages it’s sometimes called tail. We’re going to
call it rest. rest returns a new array containing all elements of the
array passed as argument, except the first one. Here’s what using it
looks like:

Its implementation is simple, but keep in mind that we’re returning a
newly allocated array. We’re not modifying the array passed to rest:

        },
    },
}

>> let a = [1, 2, 3, 4];
>> rest(a)
[2, 3, 4]
>> rest(rest(a))
[3, 4]
>> rest(rest(rest(a)))
[4]
>> rest(rest(rest(rest(a))))
[]
>> rest(rest(rest(rest(rest(a)))))
null

// evaluator/builtins.go

var builtins = map[string]*object.Builtin{
// [...]

    "rest": &object.Builtin{
        Fn: func(args ...object.Object) object.Object {
            if len(args) != 1 {
                return newError("wrong number of arguments. got=%d, want=1",
                    len(args))
            }
            if args[0].Type() != object.ARRAY_OBJ {
                return newError("argument to `rest` must be ARRAY, got %s",
                    args[0].Type())
            }

            arr := args[0].(*object.Array)
            length := len(arr.Elements)



The last array function we’re going to build into our interpreter is
called push. It adds a new element to the end of the array. But, and
here’s the kicker, it doesn’t modify the given array. Instead it allocates
a new array with the same elements as the old one plus the new,
pushed element. Arrays are immutable in Monkey. Here is push in
action:

And here is its implementation:

            if length > 0 {
                newElements := make([]object.Object, length-1, length-1)
                copy(newElements, arr.Elements[1:length])
                return &object.Array{Elements: newElements}
            }

            return NULL
        },
    },
}

>> let a = [1, 2, 3, 4];
>> let b = push(a, 5);
>> a
[1, 2, 3, 4]
>> b
[1, 2, 3, 4, 5]

// evaluator/builtins.go

var builtins = map[string]*object.Builtin{
// [...]

    "push": &object.Builtin{
        Fn: func(args ...object.Object) object.Object {
            if len(args) != 2 {
                return newError("wrong number of arguments. got=%d, want=2",
                    len(args))
            }
            if args[0].Type() != object.ARRAY_OBJ {
                return newError("argument to `push` must be ARRAY, got %s",
                    args[0].Type())
            }



Test-Driving Arrays

We now have array literals, the index operator and a few built-in
functions to work with arrays. It’s time to take them for a spin. Let’s
see what they can do.

With first, rest and push we can build a map function:

And with map we can do things like this:

Isn’t this amazing? There’s more! Based on the same built-in
functions we can also define a reduce function:

            arr := args[0].(*object.Array)
            length := len(arr.Elements)

            newElements := make([]object.Object, length+1, length+1)
            copy(newElements, arr.Elements)
            newElements[length] = args[1]

            return &object.Array{Elements: newElements}
        },
    },
}

let map = fn(arr, f) {
  let iter = fn(arr, accumulated) {
    if (len(arr) == 0) {
      accumulated
    } else {
      iter(rest(arr), push(accumulated, f(first(arr))));
    }
  };

  iter(arr, []);
};

>> let a = [1, 2, 3, 4];
>> let double = fn(x) { x * 2 };
>> map(a, double);
[2, 4, 6, 8]



And reduce, in turn, can be used to define a sum function:

And it works like a charm:

As you probably know, I’m not a fan of patting oneself on the back,
but let me just say this: holy monkey! Look at what our interpreter can
do! A map function?! reduce?! We’ve come a long, long way!

And that’s not even all of it! There’s a lot more we can do now and I
urge you to explore the possibilities the array data type and the few
built-in functions give us. But you know what you should do first? Take
some time off, brag about this to your friends and family, enjoy the
praise and compliments. And when you come back, we’ll add another
data type.

let reduce = fn(arr, initial, f) {
  let iter = fn(arr, result) {
    if (len(arr) == 0) {
      result
    } else {
      iter(rest(arr), f(result, first(arr)));
    }
  };

  iter(arr, initial);
};

let sum = fn(arr) {
  reduce(arr, 0, fn(initial, el) { initial + el });
};

>> sum([1, 2, 3, 4, 5]);
15



4.5 - Hashes
The next data type we’re going to add is called “hash”. A hash in
Monkey is what’s sometimes called hash, map, hash map or
dictionary in other programming languages. It maps keys to values.

In order to construct a hash in Monkey one uses the hash literal: a
comma-separated list of key-value pairs that’s enclosed by curly
braces. Each key-value pair uses a colon to differentiate between the
key and the value. Here is what using a hash literal looks like:

In this example myHash contains three key-value pairs. The keys are
all strings. And, as you can see, we can use index operator
expressions to get values out of the hash again, just like we can with
arrays. Except that in this example the index values are strings, which
don’t work with arrays. And that’s not even the only data type that’s
usable as a hash key:

That’s also valid. In fact, besides string, integer and boolean literals
we can use any expression as index in index operator expressions:

>> let myHash = {"name": "Jimmy", "age": 72, "band": "Led Zeppelin"};
>> myHash["name"]
Jimmy
>> myHash["age"]
72
>> myHash["band"]
Led Zeppelin

>> let myHash = {true: "yes, a boolean", 99: "correct, an integer"};
>> myHash[true]
yes, a boolean
>> myHash[99]
correct, an integer

>> myHash[5 > 1]
yes, a boolean



As long as these expressions evaluate to either strings, integers or
booleans they are usable as hash keys. Here 5 > 1 evaluates to true
and 100 - 1 evaluates to 99, both of which are valid and mapped to
values in myHash.

Rather unsurprisingly our implementation will use Go’s map as the
underlying data structure for Monkey hashes. But since we want to
use strings, integers and booleans interchangeably as keys, we need
to build something on top of plain old map to make it work. We’ll come
to that when we extend our object system. But first we have to turn
hash literals into tokens.

Lexing Hash Literals

How do we turn hash literals into tokens? Which tokens do we need
to recognize and output in our lexer so that we can later work with
them in the parser? Here is the hash literal from above again:

Besides the string and integer literals there are four characters in use
here that are important: {, }, , and :. We already know how to lex the
first three. Our lexer turns these into token.LBRACE, token.RBRACE and
token.COMMA respectively. That means, all that’s left for us to do in this
section is to turn : into a token.

And for that we first need to define the necessary token type in the
token package:

>> myHash[100 - 1]
correct, an integer

{"name": "Jimmy", "age": 72, "band": "Led Zeppelin"}

// token/token.go

const (
// [...]
    COLON = ":"
// [...]
)



Next we’re going to add a new test for the NextToken method of Lexer
that expects a token.COLON:

// lexer/lexer_test.go

func TestNextToken(t *testing.T) {
    input := `let five = 5;
let ten = 10;

let add = fn(x, y) {
  x + y;
};

let result = add(five, ten);
!-/*5;
5 < 10 > 5;

if (5 < 10) {
    return true;
} else {
    return false;
}

10 == 10;
10 != 9;
"foobar"
"foo bar"
[1, 2];
{"foo": "bar"}
`

    tests := []struct {
        expectedType    token.TokenType
        expectedLiteral string
    }{
// [...]
        {token.LBRACE, "{"},
        {token.STRING, "foo"},
        {token.COLON, ":"},
        {token.STRING, "bar"},
        {token.RBRACE, "}"},
        {token.EOF, ""},
    }



We could get away with adding a single : to the test input, but using a
hash literal as we did here provides a little more context when later
reading and eventually debugging the test.

Turning : into token.COLON is as easy as it gets:

Only two new lines and the lexer now spits out token.COLON:

Boom! The lexer now returns token.LBRACE, token.RBRACE,
token.COMMA and the new token.COLON. That’s all we need in order to
parse to hash literals.

Parsing Hash Literals

Before we start working on our parser or even writing a test, let’s look
at the basic syntactic structure of a hash literal:

It’s a comma-separated list of pairs. Each pair consists of two
expressions. One produces the hash key and one produces the
value. The key is separated from the value with a colon. The list is
enclosed by a pair of curly braces.

// [...]
}

// lexer/lexer.go

func (l *Lexer) NextToken() token.Token {
// [...]
    case ':':
        tok = newToken(token.COLON, l.ch)
// [...]
}

$ go test ./lexer
ok      monkey/lexer    0.006s

{<expression> : <expression>, <expression> : <expression>, ... }



When we turn this into an AST node, we have to keep track of the
key-value pairs. Now how would we do that? We’ll use a map, yes, but
of what type are the keys and the values in this map?

We said earlier that the only admissible data types for hash keys are
strings, integers and booleans. But we can’t enforce that in the
parser. Instead we’ll have to validate hash key types in the evaluation
stage and generate possible errors there.

That’s because a lot of different expressions can produce strings,
integers or booleans. Not just their literal forms. Enforcing the data
type of hash keys in the parsing stage would prevent us from doing
something like this:

Here key evaluates to "name" and is thus totally valid as a hash key,
even though it’s an identifier. In order to allow this, we need to allow
any expression as a key and any expression as a value in a hash
literal. At least in the parsing stage. Following that our
ast.HashLiteral definition looks like this:

let key = "name";
let hash = {key: "Monkey"};

// ast/ast.go

type HashLiteral struct {
    Token token.Token // the '{' token
    Pairs map[Expression]Expression
}

func (hl *HashLiteral) expressionNode()      {}
func (hl *HashLiteral) TokenLiteral() string { return hl.Token.Literal }
func (hl *HashLiteral) String() string {
    var out bytes.Buffer

    pairs := []string{}
    for key, value := range hl.Pairs {
        pairs = append(pairs, key.String()+":"+value.String())
    }



Now that we’re clear about the structure of hash literals and have
ast.HashLiteral defined, we can write tests for our parser:

    out.WriteString("{")
    out.WriteString(strings.Join(pairs, ", "))
    out.WriteString("}")

    return out.String()
}

// parser/parser_test.go

func TestParsingHashLiteralsStringKeys(t *testing.T) {
    input := `{"one": 1, "two": 2, "three": 3}`

    l := lexer.New(input)
    p := New(l)
    program := p.ParseProgram()
    checkParserErrors(t, p)

    stmt := program.Statements[0].(*ast.ExpressionStatement)
    hash, ok := stmt.Expression.(*ast.HashLiteral)
    if !ok {
        t.Fatalf("exp is not ast.HashLiteral. got=%T", stmt.Expression)
    }

    if len(hash.Pairs) != 3 {
        t.Errorf("hash.Pairs has wrong length. got=%d", len(hash.Pairs))
    }

    expected := map[string]int64{
        "one":   1,
        "two":   2,
        "three": 3,
    }

    for key, value := range hash.Pairs {
        literal, ok := key.(*ast.StringLiteral)
        if !ok {
            t.Errorf("key is not ast.StringLiteral. got=%T", key)
        }

        expectedValue := expected[literal.String()]



And of course, we also have to be sure that we parse an empty hash
literal correctly, because such edge-cases are the root of all hair loss
in programming:

I also added two more tests that are similar to
TestHashLiteralStringKeys but use integers and booleans as hash
keys and make sure the parser turns those into *ast.IntegerLiteral
and *ast.Boolean respectively. And then there is a fifth test function
that makes sure the values in a hash literal can be any expression,
even operator expressions. It looks like this:

        testIntegerLiteral(t, value, expectedValue)
    }
}

// parser/parser_test.go

func TestParsingEmptyHashLiteral(t *testing.T) {
    input := "{}"

    l := lexer.New(input)
    p := New(l)
    program := p.ParseProgram()
    checkParserErrors(t, p)

    stmt := program.Statements[0].(*ast.ExpressionStatement)
    hash, ok := stmt.Expression.(*ast.HashLiteral)
    if !ok {
        t.Fatalf("exp is not ast.HashLiteral. got=%T", stmt.Expression)
    }

    if len(hash.Pairs) != 0 {
        t.Errorf("hash.Pairs has wrong length. got=%d", len(hash.Pairs))
    }
}

// parser/parser_test.go

func TestParsingHashLiteralsWithExpressions(t *testing.T) {
    input := `{"one": 0 + 1, "two": 10 - 8, "three": 15 / 5}`

    l := lexer.New(input)



    p := New(l)
    program := p.ParseProgram()
    checkParserErrors(t, p)

    stmt := program.Statements[0].(*ast.ExpressionStatement)
    hash, ok := stmt.Expression.(*ast.HashLiteral)
    if !ok {
        t.Fatalf("exp is not ast.HashLiteral. got=%T", stmt.Expression)
    }

    if len(hash.Pairs) != 3 {
        t.Errorf("hash.Pairs has wrong length. got=%d", len(hash.Pairs))
    }

    tests := map[string]func(ast.Expression){
        "one": func(e ast.Expression) {
            testInfixExpression(t, e, 0, "+", 1)
        },
        "two": func(e ast.Expression) {
            testInfixExpression(t, e, 10, "-", 8)
        },
        "three": func(e ast.Expression) {
            testInfixExpression(t, e, 15, "/", 5)
        },
    }

    for key, value := range hash.Pairs {
        literal, ok := key.(*ast.StringLiteral)
        if !ok {
            t.Errorf("key is not ast.StringLiteral. got=%T", key)
            continue
        }

        testFunc, ok := tests[literal.String()]
        if !ok {
            t.Errorf("No test function for key %q found", literal.String())
            continue
        }

        testFunc(value)
    }
}



So how are all of these test functions doing? Not so well, to be
honest. We get a lot of failures and parser errors:

It might sound unbelievable but there’s good news: it only takes one
function to make all of these tests pass. One prefixParseFn, to be
exact. Since the token.LBRACE of a hash literal is in prefix position, just
like the token.LBRACKET of an array literal, we can define a
parseHashLiteral method as a prefixParseFn:

$ go test ./parser
--- FAIL: TestParsingEmptyHashLiteral (0.00s)
  parser_test.go:1173: parser has 2 errors
  parser_test.go:1175: parser error: "no prefix parse function for { found"
  parser_test.go:1175: parser error: "no prefix parse function for } found"
--- FAIL: TestParsingHashLiteralsStringKeys (0.00s)
  parser_test.go:1173: parser has 7 errors
  parser_test.go:1175: parser error: "no prefix parse function for { found"
[... more errors ...]
--- FAIL: TestParsingHashLiteralsBooleanKeys (0.00s)
  parser_test.go:1173: parser has 5 errors
  parser_test.go:1175: parser error: "no prefix parse function for { found"
[... more errors ...]
--- FAIL: TestParsingHashLiteralsIntegerKeys (0.00s)
  parser_test.go:967: parser has 7 errors
  parser_test.go:969: parser error: "no prefix parse function for { found"
[... more errors ...]
--- FAIL: TestParsingHashLiteralsWithExpressions (0.00s)
  parser_test.go:1173: parser has 7 errors
  parser_test.go:1175: parser error: "no prefix parse function for { found"
[... more errors ...]
FAIL
FAIL    monkey/parser   0.008s

// parser/parser.go

func New(l *lexer.Lexer) *Parser {
// [...]
    p.registerPrefix(token.LBRACE, p.parseHashLiteral)
// [...]
}

func (p *Parser) parseHashLiteral() ast.Expression {
    hash := &ast.HashLiteral{Token: p.curToken}



It may look intimidating, but there is nothing in parseHashLiteral we
haven’t seen before. It only loops over key-value expression pairs by
checking for a closing token.RBRACE and calling parseExpression two
times. That and the filling of hash.Pairs are the most important parts
of this method. It does its job well:

All of our parser tests pass! And judging by the numbers of tests we
added, we can be reasonably sure that our parser now knows how to
parse hash literals. That means we’re now coming to the most
interesting part of adding hashes to our interpreter: representing
them in the object system and evaluating hash literals.

    hash.Pairs = make(map[ast.Expression]ast.Expression)

    for !p.peekTokenIs(token.RBRACE) {
        p.nextToken()
        key := p.parseExpression(LOWEST)

        if !p.expectPeek(token.COLON) {
            return nil
        }

        p.nextToken()
        value := p.parseExpression(LOWEST)

        hash.Pairs[key] = value

        if !p.peekTokenIs(token.RBRACE) && !p.expectPeek(token.COMMA) {
            return nil
        }
    }

    if !p.expectPeek(token.RBRACE) {
        return nil
    }

    return hash
}

$ go test ./parser
ok      monkey/parser   0.006s



Hashing Objects

Besides extending the lexer and parser, adding a new data type also
means representing it in the object system. We successfully did that
for integers, strings and arrays. But whereas implementing these
other data types just meant defining a struct that has a .Value field
with the correct type, hashes require a little bit more effort. Let me
explain why.

Let’s say we defined a new object.Hash type like this:

That’s the most obvious choice for implementing a Hash data type
based on Go’s map. But with this definition, how would we fill the Pairs
map? And more importantly, how would we get values back out of it?

Consider this piece of Monkey code:

Let’s say we are evaluating these two lines and are using the
object.Hash definition from above. When evaluating the hash literal in
the first line we take every key-value pair and put it in the
map[Object]Object map, resulting in .Pairs having the following
mapping: an *object.String with .Value being "name" mapped to an
*object.String with .Value being "Monkey".

So far, so good. But the problem arises in the second line where we
use an index expression to try to access the "Monkey" string.

In this second line the "name" string literal of the index expression
evaluates to a new, freshly allocated *object.String. And even
though this new *object.String also contains "name" in its .Value

type Hash struct {
  Pairs map[Object]Object
}

let hash = {"name": "Monkey"};
hash["name"]



field, just like the other *object.String in Pairs, we can’t use the new
one to retrieve "Monkey".

The reason for this is that they’re pointers pointing to different
memory locations. The fact that the content of the memory locations
they point to is the same ("name") doesn’t matter. Comparing these
pointers would tell us that they’re not equal. That means using the
newly created *object.String as a key doesn’t get us "Monkey".
That’s how pointers and comparison between them works in Go.

Here is an example that demonstrates the problem we’d face with the
object.Hash implementation from above:

As a solution to this problem we could iterate over every key in
.Pairs, check if it’s an *object.String and compare its .Value to the
.Value of the key in the index expression. We’d find the matching
value this way, but this method turns the lookup time for a given key
from O(1) into O(n), defeating the entire purpose of using hashes in
the first place.

Another option is to define Pairs as a map[string]Object and then
use the .Value of *object.String as the keys. That works, but not for
integers and booleans.

name1 := &object.String{Value: "name"}
monkey := &object.String{Value: "Monkey"}

pairs := map[object.Object]object.Object{}
pairs[name1] = monkey

fmt.Printf("pairs[name1]=%+v\n", pairs[name1])
// => pairs[name1]=&{Value:Monkey}

name2 := &object.String{Value: "name"}

fmt.Printf("pairs[name2]=%+v\n", pairs[name2])
// => pairs[name2]=<nil>

fmt.Printf("(name1 == name2)=%t\n", name1 == name2)
// => (name1 == name2)=false



No, what we need is a way to generate hashes for objects that we
can easily compare and use as hash keys in our object.Hash. We
need to be able to generate a hash key for an *object.String that’s
comparable and equal to the hash key of another *object.String
with the same .Value. The same goes for *object.Integer and
*object.Boolean. But the hash keys for an *object.String must never
be equal to the hash key for an *object.Integer or an
*object.Boolean. Between types the hash keys always have to differ.

We can express the desired behaviour in a set of test functions in our
object system:

That’s exactly what we want from a HashKey() method. And not just
for *object.String but for *object.Boolean and *object.Integer,
which is why the same test function exists for both of them too.

// object/object_test.go

package object

import "testing"

func TestStringHashKey(t *testing.T) {
    hello1 := &String{Value: "Hello World"}
    hello2 := &String{Value: "Hello World"}
    diff1 := &String{Value: "My name is johnny"}
    diff2 := &String{Value: "My name is johnny"}

    if hello1.HashKey() != hello2.HashKey() {
        t.Errorf("strings with same content have different hash keys")
    }

    if diff1.HashKey() != diff2.HashKey() {
        t.Errorf("strings with same content have different hash keys")
    }

    if hello1.HashKey() == diff1.HashKey() {
        t.Errorf("strings with different content have same hash keys")
    }
}



To stop the tests from blowing up we need to implement the
HashKey() method on each of the three types:

Every HashKey() method returns a HashKey. As you can see in its
definition, HashKey is nothing fancy. The Type field contains an
ObjectType (which is a string) and thus effectively “scopes” HashKeys
to different object types. The Value field holds the actual hash, which
is an integer. Since it’s just a string and an integer we can easily

// object/object.go

import (
// [...]
    "hash/fnv"
)

type HashKey struct {
    Type  ObjectType
    Value uint64
}

func (b *Boolean) HashKey() HashKey {
    var value uint64

    if b.Value {
        value = 1
    } else {
        value = 0
    }

    return HashKey{Type: b.Type(), Value: value}
}

func (i *Integer) HashKey() HashKey {
    return HashKey{Type: i.Type(), Value: uint64(i.Value)}
}

func (s *String) HashKey() HashKey {
    h := fnv.New64a()
    h.Write([]byte(s.Value))

    return HashKey{Type: s.Type(), Value: h.Sum64()}
}



compare a HashKey to another HashKey by using the == operator. And
that also makes HashKey usable as a key in a Go map.

There is still a possibility, albeit a small one, that different Strings
with different Values result in the same hash. That happens when the
hash/fnv package generates the same integer for different values, an
event called a hash collision. Chances that we experience it are low,
but it should be noted that there are well-known techniques such as
“separate chaining” and “open addressing” to work around the
problem. Implementing one of these mitigations is outside of this
book’s scope, but certainly a nice exercise for the curious reader.

The problem we demonstrated earlier is solved by using this newly
defined HashKey and the HashKey() methods:

That’s exactly what we want! The HashKey definition and the
HashKey() method implementations solve the problems we had with
our naive Hash definition. They also make the tests pass:

name1 := &object.String{Value: "name"}
monkey := &object.String{Value: "Monkey"}

pairs := map[object.HashKey]object.Object{}
pairs[name1.HashKey()] = monkey

fmt.Printf("pairs[name1.HashKey()]=%+v\n", pairs[name1.HashKey()])
// => pairs[name1.HashKey()]=&{Value:Monkey}

name2 := &object.String{Value: "name"}

fmt.Printf("pairs[name2.HashKey()]=%+v\n", pairs[name2.HashKey()])
// => pairs[name2.HashKey()]=&{Value:Monkey}

fmt.Printf("(name1 == name2)=%t\n", name1 == name2)
// => (name1 == name2)=false

fmt.Printf("(name1.HashKey() == name2.HashKey())=%t\n",
  name1.HashKey() == name2.HashKey())
// => (name1.HashKey() == name2.HashKey())=true



Now we can define object.Hash and use this new HashKey type:

This adds both the definition of Hash and HashPair. HashPair is the
type of the values in Hash.Pairs. You might be wondering why we use
that and not just define Pairs as a map[HashKey]Object.

The reason is the Inspect() method of Hash. When we later print a
Monkey hash in our REPL, we want to print the values contained in
the hash as well as its keys. And just printing the HashKeys is not
really useful. So we keep track of the objects that generated the
HashKeys by using HashPairs as values, where we save the original
key object and the value object its mapped to. That way we can call
the Inspect() methods of the key objects to generate the Inspect()
output for *object.Hash. Here is said Inspect() method:

$ go test ./object
ok      monkey/object   0.008s

// object/object.go

const (
// [...]
    HASH_OBJ = "HASH"
)

type HashPair struct {
    Key   Object
    Value Object
}

type Hash struct {
    Pairs map[HashKey]HashPair
}

func (h *Hash) Type() ObjectType { return HASH_OBJ }

// object/object.go

func (h *Hash) Inspect() string {
    var out bytes.Buffer



The Inspect() method is not the only reason why it’s good to keep
track of the objects that generated the HashKey. That would also be
necessary if we were to implement something like a range function for
Monkey hashes, which iterates over keys and values in the hash. Or
if we want to add a firstPair function that returns the first key and
value of a given hash as an array. Or if we want… You get the drift.
Keeping track of keys is highly useful, even though for now only the
Inspect() method benefits.

And that’s it! That’s the whole implementation of object.Hash. But
there’s a small thing we ought to do while we still have the object
package open:

We can use this interface in our evaluator to check if the given object
is usable as a hash key when we evaluate hash literals or index
expressions for hashes.

At the moment it’s only implemented by *object.String,
*object.Boolean and *object.Integer.

    pairs := []string{}
    for _, pair := range h.Pairs {
        pairs = append(pairs, fmt.Sprintf("%s: %s",
            pair.Key.Inspect(), pair.Value.Inspect()))
    }

    out.WriteString("{")
    out.WriteString(strings.Join(pairs, ", "))
    out.WriteString("}")

    return out.String()
}

// object/object.go

type Hashable interface {
    HashKey() HashKey
}



Granted, there’s one more thing we could do before moving on: we
could optimize the performance of the HashKey() methods by caching
their return values, but that sounds like a nice exercise for the
performance-minded reader.

Evaluating Hash Literals

We’re about to start evaluating hash literals and I’ll be completely
honest with you: the hardest part about adding hashes to our
interpreter is over. It’s smooth sailing from here on out. So, let’s enjoy
the ride, relax and write a test:

// evaluator/evaluator_test.go

func TestHashLiterals(t *testing.T) {
    input := `let two = "two";
    {
        "one": 10 - 9,
        two: 1 + 1,
        "thr" + "ee": 6 / 2,
        4: 4,
        true: 5,
        false: 6
    }`

    evaluated := testEval(input)
    result, ok := evaluated.(*object.Hash)
    if !ok {
        t.Fatalf("Eval didn't return Hash. got=%T (%+v)", evaluated, evaluated)
    }

    expected := map[object.HashKey]int64{
        (&object.String{Value: "one"}).HashKey():   1,
        (&object.String{Value: "two"}).HashKey():   2,
        (&object.String{Value: "three"}).HashKey(): 3,
        (&object.Integer{Value: 4}).HashKey():      4,
        TRUE.HashKey():                             5,
        FALSE.HashKey():                            6,
    }

    if len(result.Pairs) != len(expected) {
        t.Fatalf("Hash has wrong num of pairs. got=%d", len(result.Pairs))



This test function shows what we want from Eval when it encounters
a *ast.HashLiteral: a fresh *object.Hash with the correct number of
HashPairs mapped to the matching HashKeys in its Pairs attribute.

And it also shows another requirement we have: strings, identifiers,
infix operator expressions, booleans and integers - they should all be
usable as keys. Any expression really. As long as it produces an
object that implements the Hashable interface it should usable as a
hash key.

Then there are the values. They can be produced by any expression,
too. We test for this here by asserting that 10 - 9 evaluates to 1, 6 /
2 to 3 and so on.

As expected the test fails:

We know how to get it to pass, though. We need to extend our Eval
function with another case branch for *ast.HashLiterals:

    }

    for expectedKey, expectedValue := range expected {
        pair, ok := result.Pairs[expectedKey]
        if !ok {
            t.Errorf("no pair for given key in Pairs")
        }

        testIntegerObject(t, pair.Value, expectedValue)
    }
}

$ go test ./evaluator
--- FAIL: TestHashLiterals (0.00s)
  evaluator_test.go:522: Eval didn't return Hash. got=<nil> (<nil>)
FAIL
FAIL    monkey/evaluator        0.008s

// evaluator/evaluator.go

func Eval(node ast.Node, env *object.Environment) object.Object {
// [...]



The evalHashLiteral function here may look intimidating, but trust
me, it doesn’t bite:

When iterating over the node.Pairs the keyNode is the first to be
evaluated. Besides checking if the call to Eval produced an error we

    case *ast.HashLiteral:
        return evalHashLiteral(node, env)

// [...]
}

// evaluator/evaluator.go

func evalHashLiteral(
    node *ast.HashLiteral,
    env *object.Environment,
) object.Object {
    pairs := make(map[object.HashKey]object.HashPair)

    for keyNode, valueNode := range node.Pairs {
        key := Eval(keyNode, env)
        if isError(key) {
            return key
        }

        hashKey, ok := key.(object.Hashable)
        if !ok {
            return newError("unusable as hash key: %s", key.Type())
        }

        value := Eval(valueNode, env)
        if isError(value) {
            return value
        }

        hashed := hashKey.HashKey()
        pairs[hashed] = object.HashPair{Key: key, Value: value}
    }

    return &object.Hash{Pairs: pairs}
}



also make a type assertion about the evaluation result: it needs to
implement the object.Hashable interface, otherwise it’s unusable as a
hash key. That’s exactly why we added the Hashable definition.

Then we call Eval again, to evaluate valueNode. If that call to Eval also
doesn’t produce an error, we can add the newly produced key-value
pair to our pairs map. We do this by generating a HashKey for the
aptly-named hashKey object with a call to HashKey(). Then we initialize
a new HashPair, pointing to both key and value and add it to pairs.

And that’s all it takes. The tests are now passing:

That means we can already start using hash literals in our REPL:

That’s awesome! But we can’t get elements out of the hash yet,
which kinda diminishes their usefulness:

That’s what we’re going to fix now.

Evaluating Index Expressions With Hashes

Remember that switch statement we added to evalIndexExpression
in our evaluator? And do you also remember when I told you that
we’re going to add another case branch? Well, here we are!

$ go test ./evaluator
ok      monkey/evaluator        0.007s

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> {"name": "Monkey", "age": 0, "type": "Language", "status": "awesome"}
{age: 0, type: Language, status: awesome, name: Monkey}

>> let bob = {"name": "Bob", "age": 99};
>> bob["name"]
ERROR: index operator not supported: HASH



But first of all we need to add a test function that makes sure
accessing values in a hash via an index expression works:

// evaluator/evaluator_test.go

func TestHashIndexExpressions(t *testing.T) {
    tests := []struct {
        input    string
        expected interface{}
    }{
        {
            `{"foo": 5}["foo"]`,
            5,
        },
        {
            `{"foo": 5}["bar"]`,
            nil,
        },
        {
            `let key = "foo"; {"foo": 5}[key]`,
            5,
        },
        {
            `{}["foo"]`,
            nil,
        },
        {
            `{5: 5}[5]`,
            5,
        },
        {
            `{true: 5}[true]`,
            5,
        },
        {
            `{false: 5}[false]`,
            5,
        },
    }

    for _, tt := range tests {
        evaluated := testEval(tt.input)
        integer, ok := tt.expected.(int)
        if ok {



Just like in TestArrayIndexExpressions we’re making sure using index
operator expressions produces the correct value - only this time with
hashes. The different test cases here use string, integer or boolean
hash keys when retrieving values out of a hash. So, in essence, what
the test really asserts is that the HashKey methods implemented by
various data types are called correctly.

And to make sure that using an object as hash key that does not
implement object.Hashable produces an error, we can add another
test to our TestErrorHandling test function:

Running go test now results in the expected failures:

            testIntegerObject(t, evaluated, int64(integer))
        } else {
            testNullObject(t, evaluated)
        }
    }
}

// evaluator/evaluator_test.go

func TestErrorHandling(t *testing.T) {
    tests := []struct {
        input           string
        expectedMessage string
    }{
// [...]
        {
            `{"name": "Monkey"}[fn(x) { x }];`,
            "unusable as hash key: FUNCTION",
        },
    }

// [...]
}

$ go test ./evaluator
--- FAIL: TestErrorHandling (0.00s)
  evaluator_test.go:237: wrong error message.\
    expected="unusable as hash key: FUNCTION",\
    got="index operator not supported: HASH"



That means we’re ready to add another case branch to the switch
statement in evalIndexExpression:

The new case branch calls a new function: evalHashIndexExpression.
And we already know how evalHashIndexExpression has to work,
since we successfully tested the usage of the object.Hashable
interface before - in our tests and when evaluating hash literals. So
no surprises here:

--- FAIL: TestHashIndexExpressions (0.00s)
  evaluator_test.go:597: object is not Integer.\
    got=*object.Error (&{Message:index operator not supported: HASH})
  evaluator_test.go:625: object is not NULL.\
    got=*object.Error (&{Message:index operator not supported: HASH})
  evaluator_test.go:597: object is not Integer.\
    got=*object.Error (&{Message:index operator not supported: HASH})
  evaluator_test.go:625: object is not NULL.\
    got=*object.Error (&{Message:index operator not supported: HASH})
  evaluator_test.go:597: object is not Integer.\
    got=*object.Error (&{Message:index operator not supported: HASH})
  evaluator_test.go:597: object is not Integer.\
    got=*object.Error (&{Message:index operator not supported: HASH})
  evaluator_test.go:597: object is not Integer.\
    got=*object.Error (&{Message:index operator not supported: HASH})
FAIL
FAIL    monkey/evaluator        0.009s

// evaluator/evaluator.go

func evalIndexExpression(left, index object.Object) object.Object {
    switch {
    case left.Type() == object.ARRAY_OBJ && index.Type() == object.INTEGER_OBJ:
        return evalArrayIndexExpression(left, index)
    case left.Type() == object.HASH_OBJ:
        return evalHashIndexExpression(left, index)
    default:
        return newError("index operator not supported: %s", left.Type())
    }
}

// evaluator/evaluator.go

func evalHashIndexExpression(hash, index object.Object) object.Object {



Adding evalHashIndexExpression to the switch statement makes the
tests pass:

We can now successfully retrieve values from our hashes! Don’t
believe me? Think the tests are lying to us? I faked the test output? It
can’t be? The whole book is full of li.. what? No, watch this.

    hashObject := hash.(*object.Hash)

    key, ok := index.(object.Hashable)
    if !ok {
        return newError("unusable as hash key: %s", index.Type())
    }

    pair, ok := hashObject.Pairs[key.HashKey()]
    if !ok {
        return NULL
    }

    return pair.Value
}

$ go test ./evaluator
ok      monkey/evaluator        0.007s

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> let people = [{"name": "Alice", "age": 24}, {"name": "Anna", "age": 28}];
>> people[0]["name"];
Alice
>> people[1]["age"];
28
>> people[1]["age"] + people[0]["age"];
52
>> let getName = fn(person) { person["name"]; };
>> getName(people[0]);
Alice
>> getName(people[1]);
Anna



4.6 - The Grand Finale
Our Monkey interpreter is now fully functional. It supports
mathematical expressions, variable bindings, functions and the
application of those functions, conditionals, return statements and
even advanced concepts like higher-order functions and closures.
And then there are the different data types: integers, booleans,
strings, arrays and hashes. We can be proud of ourselves.

But… and here comes the but… our interpreter still does not pass the
most basic of all programming language tests: printing something.
Yes, our Monkey interpreter can’t communicate with the outside
world. Even programming language scoundrel like Bash and
Brainfuck manage to do that. It’s clear what we have to do. We have
to add one last built-in function: puts.

puts prints the given arguments on new lines to STDOUT. It calls the
Inspect() method on the objects passed in as arguments and prints
the return value of these calls. The Inspect() method is part of the
Object interface, so every entity in our object system supports it.
Using puts should look kinda like this:

And puts is a variadic function. It takes an unlimited number of
arguments and prints each on a separate line:

>> puts("Hello!")
Hello!
>> puts(1234)
1234
>> puts(fn(x) { x * x })
fn(x) {
(x * x)
}

>> puts("hello", "world", "how", "are", "you")
hello
world



Of course, puts is all about printing things and not producing a value,
so we need to make sure that it returns NULL:

That also means that our REPL will print the null in addition to the
output we expect from puts. So it will look like this:

Now that’s more than enough information and specification to
complete this last quest of ours. Are you ready?

Here it is, here’s what this section has been building up to, here is the
complete, working implementation of puts:

how
are
you

>> let putsReturnValue = puts("foobar");
foobar
>> putsReturnValue
null

>> puts("Hello!")
Hello!
null

// evaluator/builtins.go

import (
    "fmt"
    "monkey/object"
)

var builtins = map[string]*object.Builtin{
// [...]
    "puts": &object.Builtin{
        Fn: func(args ...object.Object) object.Object {
            for _, arg := range args {
                fmt.Println(arg.Inspect())
            }

            return NULL
        },



And with that, we did it. We’re done. Even if you were wary of our little
celebrations and shrugged them off before, now’s the time to go
looking for a funny party hat and put it on.

In chapter three we brought the Monkey programming language to
life. It started to breathe. With our last change, we made it talk. Now,
Monkey is finally a real programming language:

    },
}

$ go run main.go
Hello mrnugget! This is the Monkey programming language!
Feel free to type in commands
>> puts("Hello World!")
Hello World!
null
>>



Going Further



The Lost Chapter

 

Nearly half a year after publishing the first version of Writing An
Interpreter In Go, I decided to add another chapter. It’s called The
Lost Chapter: A Macro System For Monkey and available for free.
You can read or download it as an eBook at
https://interpreterbook.com/lost.

https://interpreterbook.com/lost


Writing A Compiler In Go

 

Writing A Compiler In Go is the sequel to Writing An Interpreter In Go
and contains the next step in Monkey’s evolution: a bytecode
compiler and a virtual machine. It’s the same codebase and the same
approach, the books connect seamlessly, except that Monkey ends
up being 3 times faster.

You find out more about it and buy it at https://compilerbook.com.

https://compilerbook.com/
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Matt Might - Compiling Scheme to C with closure conversion -
http://matt.might.net/articles/compiling-scheme-to-c/
Rob Pike - Implementing a bignum calculator -
https://www.youtube.com/watch?v=PXoG0WX0r_E
Rob Pike - Lexical Scanning in Go -
https://www.youtube.com/watch?v=HxaD_trXwRE

Source Code

The Wren Programming Language -
https://github.com/munificent/wren
Otto - A JavaScript Interpreter In Go -
https://github.com/robertkrimen/otto
The Go Programming Language - https://github.com/golang/go
The Lua Programming Language (1.1, 3.1, 5.3.2) -
https://www.lua.org/versions.html
The Ruby Programming Language - https://github.com/ruby/ruby
c4 - C in four functions - https://github.com/rswier/c4
tcc - Tiny C Compiler - https://github.com/LuaDist/tcc
8cc - A Small C Compiler - https://github.com/rui314/8cc
Fedjmike/mini-c - https://github.com/Fedjmike/mini-c
thejameskyle/the-super-tiny-compiler -
https://github.com/thejameskyle/the-super-tiny-compiler
lisp.c - https://gist.github.com/sanxiyn/523967

http://lisperator.net/pltut/
https://www.recurse.com/blog/21-little-lisp-interpreter
http://peter.michaux.ca/articles/scheme-from-scratch-introduction
https://github.com/kanaka/mal
http://matt.might.net/articles/compiling-scheme-to-c/
https://www.youtube.com/watch?v=PXoG0WX0r_E
https://www.youtube.com/watch?v=HxaD_trXwRE
https://github.com/munificent/wren
https://github.com/robertkrimen/otto
https://github.com/golang/go
https://www.lua.org/versions.html
https://github.com/ruby/ruby
https://github.com/rswier/c4
https://github.com/LuaDist/tcc
https://github.com/rui314/8cc
https://github.com/Fedjmike/mini-c
https://github.com/thejameskyle/the-super-tiny-compiler
https://gist.github.com/sanxiyn/523967


Feedback
If you spot a typo, find something wrong with the code, have a
suggestion to make or just a question, feel free to send me an email:

me@thorstenball.com



Changelog

7 May 2020 - 1.7

Code:
Added go.mod files to the code folder so that users with Go
>= 1.13 can easily run it without having to set $GOPATH

Section 1.5:
Update wrong token types in example Lexer output
Change from fmt.Printf to fmt.Fprintf to make use of out

Section 1.3:
Fix a grammar mistake by removing the additional “the” in
“Of the course”

Section 2.9:
Fix a typo by changing “intends” to “indents”

Section 3.9:
Change “How to we” to “How do we”
Fix missing word in “we should bind it too” by rewriting
sentence

20 March 2019 - 1.6

Section 2.4:
Fix wrong parseOperatorExpression in pseudo-code
example for recursive-descent parser

Section 2.5:
Change wrong capitalization in test error message

Section 4.5:
Correct explanation of HashKey by clarifying that ObjectType
is a string (as opposed to an integer)

31 July 2018 - 1.5

Besides fixes for various typos and spelling errors:



Chapter 2:
Fix wrong mention of program.Body in test error messages
and change it to program.Statements

Section 1.3:
Make it clearer where to put import "monkey/token" line

Section 2.4:
Fix wrong error message in testLetStatement helper
function
Fix wrong indentation of input in test function
Fix missing imports of fmt package

Section 2.5:
Fix wrong mention of ParseProgram instead of the correct
parseStatement

Section 2.6:
Fix wrong explanation of failing test output in prefix
operators section
Fix wrong explanation of the for-loop condition in
parseExpression
Rename local variable oe to ie in *ast.InfixExpression
methods

Section 2.8:
Change post-refactoring version of
TestParsingInfixExpressions to make clearer that it has
been refactored
Fix wrong error message in testInfixExpression
Fix wrong output in test error message (“true” to “TRUE”)
Add missing import of strings package
Change wording to make clearer that the section includes
changes to the existing test suite

Section 2.9:
Add the missing import of monkey/parser to the REPL code

Section 3.5:
Fix wrong error message in failing test output for
TestEvalBooleanExpression

Section 3.8:
Add missing import of fmt



Section 3.10:
Add missing import

Chapter 4:
Remove unused import of unicode/utf8 package

Section 4.5:
Add note about hash collisions when explaining the HashKey
methods
Fix wrong failing test output after adding a test to
TestErrorHandling

Going Further:
Add link to the sequel Writing A Compiler In Go.

28 June 2017 - 1.4

Section 1.4:
Use a local variable to save the literal when creating
token.EQ and token.NOT_EQ

Section 2.3:
Fix a small typo

Section 2.4:
Change incorrect mention of peekPosition in lexer to correct
readPosition

Section 2.6:
Fix duplicate test input in TestOperatorPrecedenceParsing
here and in the following sections where it’s referenced

Section 3.9:
In the first example the expression 5 * 5 was used and the
text explained that this should evaluate to 10, which is
wrong. It should evaluate to 25, of course.

The Lost Chapter:
Added a new section at the end of the book about The Lost
Chapter: A Macro System For Monkey and where it can be
found.

26 January 2017 - 1.3



License of the code:
The code folder and its content are now licensed under the
MIT license. See the LICENSE file and/or the README.md file.

Section 1.1:
Make clear that whitespace is only significant in the sense
that it separates tokens, but not its length.

Section 1.3:
Small wording change
Fix wrong reference to NextToken when readChar was meant

Section 2.8:
Fix the parseBlockStatement method so it doesn’t run into an
endless loop when parsing incomplete input

Section 4.2:
Fix the readString method so it doesn’t run into an endless
loop when a string in the input is not terminated with a
closing double quote

Section 4.4:
Fix a typo in the error message of the builtin push function

20 December 2016 - 1.2

Section 2.8:
Add a missing semicolon to the test input in
TestLetStatements

Section 4.4:
Fix the failing test for the builtin push function. Error was
introduced with the last update. This change only occurrs in
the code accompanying the book and only in subfolder 04.

8 December 2016 - 1.1

Besides fixed typos and spelling errors:

Introduction



Change the “How To Use This Book” subsection to include a
link to the downloadable archive of the accompanying code

Section 1.4:
Add hint about accompanying code
Show the last, fully extended version of the test input for
TestNextToken

Section 2.6:
The failing test output for TestParsingPrefixExpressions in
the book text was wrong. It’s corrected to match the actual
output one gets when building the parser from scratch
Fix wording that didn’t match the described test output
Remove token.LPAREN from the precedences table here. It
somehow slipped in at this point, but should only be added
later on in section 2.8, where tests are supposed to fail
because it’s missing

Section 2.8:
Fix wrong test expectation ("x" changed to "y") in
TestLetStatement
Change parser_parser_test.go to parser_test.go
Better show how to use testLiteralExpression in
TestParsingInfixExpressions
Fix outdated test output for failing
TestOperatorPrecedenceParsing, TestIfExpression,
TestIfElseExpression, TestFunctionLiteralParsing

Section 3.10:
Change the Inspect() method of *object.Function to use fn
instead of function and newlines in output
Remove needless semicolons in example

Section 3.5:
Change from if/else to “if and return” in
nativeBoolToBooleanObject

Section 3.6:
Update the version of testNullObject to be the one in the
accompanying code, with a correct call to t.Errorf

Section 4.4:
Name the token.Token field of ast.ArrayLiteral



Fix possible panic through nil error in “first”, “last”, “rest”, and
“push” functions by adding separate check

Section 4.5:
Name the token.Token field of ast.HashLiteral
Replace null in output with missing error message when
trying to access hash via index expression before it’s
implemented

Section 4.6:
Change the expected output using puts with a function literal
to match the updated Inspect() of *object.Function
Explain the nulls in the expected output of put better

23 November 2016 - 1.0

Initial Release
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